Streamlining Thoracic Radiotherapy Quality assurance: One-Class Classification for Automated OAR Contour Assessment Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.1177/15330338251345895
Purpose Automating quality assurance (QA) for contours generated by automatic algorithms is critical in radiotherapy treatment planning. Manual QA is tedious, time-consuming, and prone to subjective experiences. Automatic segmentation reduces physician workload and improves consistency. However, an effective QA process for these automatic contours remains an unmet need in clinical practice. Materials and Methods The patient data used in this study was derived from the AAPM Thoracic Auto-Segmentation Challenge dataset, including left and right lungs, heart, esophagus, and spinal cord. Two groups of organ-at-risk (OAR) were generated. A ResNet-152 network was used as a feature extractor, and a one-class support vector machine (OC-SVM) was employed to classify contours as ‘high’ or ‘low’ quality. To evaluate the generalizability, we generated low-quality contours using translation and resizing techniques and assessed correlations between detection limits and metrics such as volume, Dice similarity coefficient (DSC), 95% Hausdorff distance (HD95), and mean surface distance (MSD). Results The proposed OC-SVM model outperformed binary classifiers n metrics such as balanced accuracy and area under the receiver operating characteristic curve (AUC) . It demonstrated superior performance in detecting various types of contour errors while maintaining high interpretability. Strong correlations were observed between detection limits and contour metrics. Conclusion Our proposed model integrates an attention mechanism with a one-class classification framework to automate QA for OAR delineations. This approach effectively detects diverse types of contour errors with high accuracy, significantly reducing the burden on physicians during radiotherapy planning.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1177/15330338251345895
- OA Status
- gold
- References
- 32
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4410605183
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4410605183Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1177/15330338251345895Digital Object Identifier
- Title
-
Streamlining Thoracic Radiotherapy Quality assurance: One-Class Classification for Automated OAR Contour AssessmentWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-05-01Full publication date if available
- Authors
-
Yihao Zhao, Cuiyun Yuan, Ying Liang, Yang Li, Chunxia Li, Man Zhao, Jun Hu, Ningze Zhong, Wei Liu, Chenbin LiuList of authors in order
- Landing page
-
https://doi.org/10.1177/15330338251345895Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.1177/15330338251345895Direct OA link when available
- Concepts
-
Artificial intelligence, Computer science, Quality assurance, Interpretability, Segmentation, Support vector machine, Pattern recognition (psychology), Hausdorff distance, Receiver operating characteristic, Similarity (geometry), Feature (linguistics), Metric (unit), Machine learning, Medicine, Image (mathematics), Operations management, Linguistics, Economics, External quality assessment, Philosophy, PathologyTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- References (count)
-
32Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4410605183 |
|---|---|
| doi | https://doi.org/10.1177/15330338251345895 |
| ids.doi | https://doi.org/10.1177/15330338251345895 |
| ids.pmid | https://pubmed.ncbi.nlm.nih.gov/40400421 |
| ids.openalex | https://openalex.org/W4410605183 |
| fwci | 0.0 |
| mesh[0].qualifier_ui | |
| mesh[0].descriptor_ui | D006801 |
| mesh[0].is_major_topic | False |
| mesh[0].qualifier_name | |
| mesh[0].descriptor_name | Humans |
| mesh[1].qualifier_ui | Q000379 |
| mesh[1].descriptor_ui | D011880 |
| mesh[1].is_major_topic | True |
| mesh[1].qualifier_name | methods |
| mesh[1].descriptor_name | Radiotherapy Planning, Computer-Assisted |
| mesh[2].qualifier_ui | Q000592 |
| mesh[2].descriptor_ui | D011880 |
| mesh[2].is_major_topic | True |
| mesh[2].qualifier_name | standards |
| mesh[2].descriptor_name | Radiotherapy Planning, Computer-Assisted |
| mesh[3].qualifier_ui | |
| mesh[3].descriptor_ui | D011785 |
| mesh[3].is_major_topic | True |
| mesh[3].qualifier_name | |
| mesh[3].descriptor_name | Quality Assurance, Health Care |
| mesh[4].qualifier_ui | Q000528 |
| mesh[4].descriptor_ui | D058958 |
| mesh[4].is_major_topic | True |
| mesh[4].qualifier_name | radiation effects |
| mesh[4].descriptor_name | Organs at Risk |
| mesh[5].qualifier_ui | |
| mesh[5].descriptor_ui | D060388 |
| mesh[5].is_major_topic | False |
| mesh[5].qualifier_name | |
| mesh[5].descriptor_name | Support Vector Machine |
| mesh[6].qualifier_ui | |
| mesh[6].descriptor_ui | D000465 |
| mesh[6].is_major_topic | False |
| mesh[6].qualifier_name | |
| mesh[6].descriptor_name | Algorithms |
| mesh[7].qualifier_ui | |
| mesh[7].descriptor_ui | D006801 |
| mesh[7].is_major_topic | False |
| mesh[7].qualifier_name | |
| mesh[7].descriptor_name | Humans |
| mesh[8].qualifier_ui | Q000379 |
| mesh[8].descriptor_ui | D011880 |
| mesh[8].is_major_topic | True |
| mesh[8].qualifier_name | methods |
| mesh[8].descriptor_name | Radiotherapy Planning, Computer-Assisted |
| mesh[9].qualifier_ui | Q000592 |
| mesh[9].descriptor_ui | D011880 |
| mesh[9].is_major_topic | True |
| mesh[9].qualifier_name | standards |
| mesh[9].descriptor_name | Radiotherapy Planning, Computer-Assisted |
| mesh[10].qualifier_ui | |
| mesh[10].descriptor_ui | D011785 |
| mesh[10].is_major_topic | True |
| mesh[10].qualifier_name | |
| mesh[10].descriptor_name | Quality Assurance, Health Care |
| mesh[11].qualifier_ui | Q000528 |
| mesh[11].descriptor_ui | D058958 |
| mesh[11].is_major_topic | True |
| mesh[11].qualifier_name | radiation effects |
| mesh[11].descriptor_name | Organs at Risk |
| mesh[12].qualifier_ui | |
| mesh[12].descriptor_ui | D060388 |
| mesh[12].is_major_topic | False |
| mesh[12].qualifier_name | |
| mesh[12].descriptor_name | Support Vector Machine |
| mesh[13].qualifier_ui | |
| mesh[13].descriptor_ui | D000465 |
| mesh[13].is_major_topic | False |
| mesh[13].qualifier_name | |
| mesh[13].descriptor_name | Algorithms |
| type | article |
| title | Streamlining Thoracic Radiotherapy Quality assurance: One-Class Classification for Automated OAR Contour Assessment |
| awards[0].id | https://openalex.org/G968914012 |
| awards[0].funder_id | https://openalex.org/F4320321001 |
| awards[0].display_name | |
| awards[0].funder_award_id | No. 12005301 |
| awards[0].funder_display_name | National Natural Science Foundation of China |
| awards[1].id | https://openalex.org/G4442293633 |
| awards[1].funder_id | https://openalex.org/F4320337111 |
| awards[1].display_name | |
| awards[1].funder_award_id | No.2022A1515012456 |
| awards[1].funder_display_name | Basic and Applied Basic Research Foundation of Guangdong Province |
| awards[2].id | https://openalex.org/G1987039187 |
| awards[2].funder_id | https://openalex.org/F4320316880 |
| awards[2].display_name | |
| awards[2].funder_award_id | No: JCYJ20230807150502006 |
| awards[2].funder_display_name | Natural Science Foundation of Shenzhen City |
| awards[3].id | https://openalex.org/G4875423380 |
| awards[3].funder_id | https://openalex.org/F4320335767 |
| awards[3].display_name | |
| awards[3].funder_award_id | No. SZSM201612063 |
| awards[3].funder_display_name | Sanming Project of Medicine in Shenzhen |
| biblio.issue | |
| biblio.volume | 24 |
| biblio.last_page | 15330338251345895 |
| biblio.first_page | 15330338251345895 |
| topics[0].id | https://openalex.org/T14510 |
| topics[0].field.id | https://openalex.org/fields/22 |
| topics[0].field.display_name | Engineering |
| topics[0].score | 0.9998000264167786 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2204 |
| topics[0].subfield.display_name | Biomedical Engineering |
| topics[0].display_name | Medical Imaging and Analysis |
| topics[1].id | https://openalex.org/T10358 |
| topics[1].field.id | https://openalex.org/fields/31 |
| topics[1].field.display_name | Physics and Astronomy |
| topics[1].score | 0.9984999895095825 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/3108 |
| topics[1].subfield.display_name | Radiation |
| topics[1].display_name | Advanced Radiotherapy Techniques |
| topics[2].id | https://openalex.org/T12422 |
| topics[2].field.id | https://openalex.org/fields/27 |
| topics[2].field.display_name | Medicine |
| topics[2].score | 0.9983999729156494 |
| topics[2].domain.id | https://openalex.org/domains/4 |
| topics[2].domain.display_name | Health Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2741 |
| topics[2].subfield.display_name | Radiology, Nuclear Medicine and Imaging |
| topics[2].display_name | Radiomics and Machine Learning in Medical Imaging |
| funders[0].id | https://openalex.org/F4320316880 |
| funders[0].ror | |
| funders[0].display_name | Natural Science Foundation of Shenzhen City |
| funders[1].id | https://openalex.org/F4320321001 |
| funders[1].ror | https://ror.org/01h0zpd94 |
| funders[1].display_name | National Natural Science Foundation of China |
| funders[2].id | https://openalex.org/F4320335767 |
| funders[2].ror | |
| funders[2].display_name | Sanming Project of Medicine in Shenzhen |
| funders[3].id | https://openalex.org/F4320337111 |
| funders[3].ror | |
| funders[3].display_name | Basic and Applied Basic Research Foundation of Guangdong Province |
| is_xpac | False |
| apc_list.value | 2500 |
| apc_list.currency | USD |
| apc_list.value_usd | 2500 |
| apc_paid.value | 2500 |
| apc_paid.currency | USD |
| apc_paid.value_usd | 2500 |
| concepts[0].id | https://openalex.org/C154945302 |
| concepts[0].level | 1 |
| concepts[0].score | 0.6747503280639648 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[0].display_name | Artificial intelligence |
| concepts[1].id | https://openalex.org/C41008148 |
| concepts[1].level | 0 |
| concepts[1].score | 0.6683422327041626 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[1].display_name | Computer science |
| concepts[2].id | https://openalex.org/C106436119 |
| concepts[2].level | 3 |
| concepts[2].score | 0.6601483821868896 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q836575 |
| concepts[2].display_name | Quality assurance |
| concepts[3].id | https://openalex.org/C2781067378 |
| concepts[3].level | 2 |
| concepts[3].score | 0.6455389857292175 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q17027399 |
| concepts[3].display_name | Interpretability |
| concepts[4].id | https://openalex.org/C89600930 |
| concepts[4].level | 2 |
| concepts[4].score | 0.562255859375 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q1423946 |
| concepts[4].display_name | Segmentation |
| concepts[5].id | https://openalex.org/C12267149 |
| concepts[5].level | 2 |
| concepts[5].score | 0.539368748664856 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q282453 |
| concepts[5].display_name | Support vector machine |
| concepts[6].id | https://openalex.org/C153180895 |
| concepts[6].level | 2 |
| concepts[6].score | 0.527397096157074 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[6].display_name | Pattern recognition (psychology) |
| concepts[7].id | https://openalex.org/C141898687 |
| concepts[7].level | 2 |
| concepts[7].score | 0.5120800137519836 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q1501997 |
| concepts[7].display_name | Hausdorff distance |
| concepts[8].id | https://openalex.org/C58471807 |
| concepts[8].level | 2 |
| concepts[8].score | 0.4429969787597656 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q327120 |
| concepts[8].display_name | Receiver operating characteristic |
| concepts[9].id | https://openalex.org/C103278499 |
| concepts[9].level | 3 |
| concepts[9].score | 0.4365624487400055 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q254465 |
| concepts[9].display_name | Similarity (geometry) |
| concepts[10].id | https://openalex.org/C2776401178 |
| concepts[10].level | 2 |
| concepts[10].score | 0.4281962811946869 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q12050496 |
| concepts[10].display_name | Feature (linguistics) |
| concepts[11].id | https://openalex.org/C176217482 |
| concepts[11].level | 2 |
| concepts[11].score | 0.4151979982852936 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q860554 |
| concepts[11].display_name | Metric (unit) |
| concepts[12].id | https://openalex.org/C119857082 |
| concepts[12].level | 1 |
| concepts[12].score | 0.21860143542289734 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[12].display_name | Machine learning |
| concepts[13].id | https://openalex.org/C71924100 |
| concepts[13].level | 0 |
| concepts[13].score | 0.16557371616363525 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q11190 |
| concepts[13].display_name | Medicine |
| concepts[14].id | https://openalex.org/C115961682 |
| concepts[14].level | 2 |
| concepts[14].score | 0.09858646988868713 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q860623 |
| concepts[14].display_name | Image (mathematics) |
| concepts[15].id | https://openalex.org/C21547014 |
| concepts[15].level | 1 |
| concepts[15].score | 0.0 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q1423657 |
| concepts[15].display_name | Operations management |
| concepts[16].id | https://openalex.org/C41895202 |
| concepts[16].level | 1 |
| concepts[16].score | 0.0 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q8162 |
| concepts[16].display_name | Linguistics |
| concepts[17].id | https://openalex.org/C162324750 |
| concepts[17].level | 0 |
| concepts[17].score | 0.0 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q8134 |
| concepts[17].display_name | Economics |
| concepts[18].id | https://openalex.org/C2778618615 |
| concepts[18].level | 2 |
| concepts[18].score | 0.0 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q4008393 |
| concepts[18].display_name | External quality assessment |
| concepts[19].id | https://openalex.org/C138885662 |
| concepts[19].level | 0 |
| concepts[19].score | 0.0 |
| concepts[19].wikidata | https://www.wikidata.org/wiki/Q5891 |
| concepts[19].display_name | Philosophy |
| concepts[20].id | https://openalex.org/C142724271 |
| concepts[20].level | 1 |
| concepts[20].score | 0.0 |
| concepts[20].wikidata | https://www.wikidata.org/wiki/Q7208 |
| concepts[20].display_name | Pathology |
| keywords[0].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[0].score | 0.6747503280639648 |
| keywords[0].display_name | Artificial intelligence |
| keywords[1].id | https://openalex.org/keywords/computer-science |
| keywords[1].score | 0.6683422327041626 |
| keywords[1].display_name | Computer science |
| keywords[2].id | https://openalex.org/keywords/quality-assurance |
| keywords[2].score | 0.6601483821868896 |
| keywords[2].display_name | Quality assurance |
| keywords[3].id | https://openalex.org/keywords/interpretability |
| keywords[3].score | 0.6455389857292175 |
| keywords[3].display_name | Interpretability |
| keywords[4].id | https://openalex.org/keywords/segmentation |
| keywords[4].score | 0.562255859375 |
| keywords[4].display_name | Segmentation |
| keywords[5].id | https://openalex.org/keywords/support-vector-machine |
| keywords[5].score | 0.539368748664856 |
| keywords[5].display_name | Support vector machine |
| keywords[6].id | https://openalex.org/keywords/pattern-recognition |
| keywords[6].score | 0.527397096157074 |
| keywords[6].display_name | Pattern recognition (psychology) |
| keywords[7].id | https://openalex.org/keywords/hausdorff-distance |
| keywords[7].score | 0.5120800137519836 |
| keywords[7].display_name | Hausdorff distance |
| keywords[8].id | https://openalex.org/keywords/receiver-operating-characteristic |
| keywords[8].score | 0.4429969787597656 |
| keywords[8].display_name | Receiver operating characteristic |
| keywords[9].id | https://openalex.org/keywords/similarity |
| keywords[9].score | 0.4365624487400055 |
| keywords[9].display_name | Similarity (geometry) |
| keywords[10].id | https://openalex.org/keywords/feature |
| keywords[10].score | 0.4281962811946869 |
| keywords[10].display_name | Feature (linguistics) |
| keywords[11].id | https://openalex.org/keywords/metric |
| keywords[11].score | 0.4151979982852936 |
| keywords[11].display_name | Metric (unit) |
| keywords[12].id | https://openalex.org/keywords/machine-learning |
| keywords[12].score | 0.21860143542289734 |
| keywords[12].display_name | Machine learning |
| keywords[13].id | https://openalex.org/keywords/medicine |
| keywords[13].score | 0.16557371616363525 |
| keywords[13].display_name | Medicine |
| keywords[14].id | https://openalex.org/keywords/image |
| keywords[14].score | 0.09858646988868713 |
| keywords[14].display_name | Image (mathematics) |
| language | en |
| locations[0].id | doi:10.1177/15330338251345895 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S2955411 |
| locations[0].source.issn | 1533-0338, 1533-0346 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 1533-0338 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | Technology in Cancer Research & Treatment |
| locations[0].source.host_organization | https://openalex.org/P4310320017 |
| locations[0].source.host_organization_name | SAGE Publishing |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310320017 |
| locations[0].source.host_organization_lineage_names | SAGE Publishing |
| locations[0].license | cc-by-nc |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by-nc |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Technology in Cancer Research & Treatment |
| locations[0].landing_page_url | https://doi.org/10.1177/15330338251345895 |
| locations[1].id | pmid:40400421 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306525036 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | PubMed |
| locations[1].source.host_organization | https://openalex.org/I1299303238 |
| locations[1].source.host_organization_name | National Institutes of Health |
| locations[1].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | publishedVersion |
| locations[1].raw_type | |
| locations[1].license_id | |
| locations[1].is_accepted | True |
| locations[1].is_published | True |
| locations[1].raw_source_name | Technology in cancer research & treatment |
| locations[1].landing_page_url | https://pubmed.ncbi.nlm.nih.gov/40400421 |
| locations[2].id | pmh:oai:doaj.org/article:88d3d662ec884e96a072a4433629553b |
| locations[2].is_oa | False |
| locations[2].source.id | https://openalex.org/S4306401280 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | False |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[2].source.host_organization | |
| locations[2].source.host_organization_name | |
| locations[2].license | |
| locations[2].pdf_url | |
| locations[2].version | submittedVersion |
| locations[2].raw_type | article |
| locations[2].license_id | |
| locations[2].is_accepted | False |
| locations[2].is_published | False |
| locations[2].raw_source_name | Technology in Cancer Research & Treatment, Vol 24 (2025) |
| locations[2].landing_page_url | https://doaj.org/article/88d3d662ec884e96a072a4433629553b |
| indexed_in | crossref, doaj, pubmed |
| authorships[0].author.id | https://openalex.org/A5062564259 |
| authorships[0].author.orcid | https://orcid.org/0009-0004-8565-7841 |
| authorships[0].author.display_name | Yihao Zhao |
| authorships[0].countries | CN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I200296433 |
| authorships[0].affiliations[0].raw_affiliation_string | National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, Guangdong, China |
| authorships[0].affiliations[1].institution_ids | https://openalex.org/I157773358 |
| authorships[0].affiliations[1].raw_affiliation_string | School of Electronics and Communication Engineering, Sun Yat-sen University, Shenzhen, Guangdong, China |
| authorships[0].institutions[0].id | https://openalex.org/I200296433 |
| authorships[0].institutions[0].ror | https://ror.org/02drdmm93 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I200296433 |
| authorships[0].institutions[0].country_code | CN |
| authorships[0].institutions[0].display_name | Chinese Academy of Medical Sciences & Peking Union Medical College |
| authorships[0].institutions[1].id | https://openalex.org/I157773358 |
| authorships[0].institutions[1].ror | https://ror.org/0064kty71 |
| authorships[0].institutions[1].type | education |
| authorships[0].institutions[1].lineage | https://openalex.org/I157773358 |
| authorships[0].institutions[1].country_code | CN |
| authorships[0].institutions[1].display_name | Sun Yat-sen University |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Yihao Zhao |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, Guangdong, China, School of Electronics and Communication Engineering, Sun Yat-sen University, Shenzhen, Guangdong, China |
| authorships[1].author.id | https://openalex.org/A5104337795 |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | Cuiyun Yuan |
| authorships[1].countries | CN |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I200296433 |
| authorships[1].affiliations[0].raw_affiliation_string | National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, Guangdong, China |
| authorships[1].institutions[0].id | https://openalex.org/I200296433 |
| authorships[1].institutions[0].ror | https://ror.org/02drdmm93 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I200296433 |
| authorships[1].institutions[0].country_code | CN |
| authorships[1].institutions[0].display_name | Chinese Academy of Medical Sciences & Peking Union Medical College |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Cuiyun Yuan |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, Guangdong, China |
| authorships[2].author.id | https://openalex.org/A5028146870 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-0545-1797 |
| authorships[2].author.display_name | Ying Liang |
| authorships[2].countries | CN |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I200296433 |
| authorships[2].affiliations[0].raw_affiliation_string | National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, Guangdong, China |
| authorships[2].institutions[0].id | https://openalex.org/I200296433 |
| authorships[2].institutions[0].ror | https://ror.org/02drdmm93 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I200296433 |
| authorships[2].institutions[0].country_code | CN |
| authorships[2].institutions[0].display_name | Chinese Academy of Medical Sciences & Peking Union Medical College |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Ying Liang |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, Guangdong, China |
| authorships[3].author.id | https://openalex.org/A5087232395 |
| authorships[3].author.orcid | https://orcid.org/0009-0008-5023-2711 |
| authorships[3].author.display_name | Yang Li |
| authorships[3].countries | CN |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I200296433 |
| authorships[3].affiliations[0].raw_affiliation_string | National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, Guangdong, China |
| authorships[3].institutions[0].id | https://openalex.org/I200296433 |
| authorships[3].institutions[0].ror | https://ror.org/02drdmm93 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I200296433 |
| authorships[3].institutions[0].country_code | CN |
| authorships[3].institutions[0].display_name | Chinese Academy of Medical Sciences & Peking Union Medical College |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Yang Li |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, Guangdong, China |
| authorships[4].author.id | https://openalex.org/A5100736800 |
| authorships[4].author.orcid | https://orcid.org/0000-0001-5063-3170 |
| authorships[4].author.display_name | Chunxia Li |
| authorships[4].countries | MO |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I204512498 |
| authorships[4].affiliations[0].raw_affiliation_string | Faculty of Health Sciences, University of Macau, Macau, China |
| authorships[4].institutions[0].id | https://openalex.org/I204512498 |
| authorships[4].institutions[0].ror | https://ror.org/01r4q9n85 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I204512498 |
| authorships[4].institutions[0].country_code | MO |
| authorships[4].institutions[0].display_name | University of Macau |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Chunxia Li |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | Faculty of Health Sciences, University of Macau, Macau, China |
| authorships[5].author.id | https://openalex.org/A5101363869 |
| authorships[5].author.orcid | |
| authorships[5].author.display_name | Man Zhao |
| authorships[5].countries | CN |
| authorships[5].affiliations[0].institution_ids | https://openalex.org/I200296433 |
| authorships[5].affiliations[0].raw_affiliation_string | National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, Guangdong, China |
| authorships[5].institutions[0].id | https://openalex.org/I200296433 |
| authorships[5].institutions[0].ror | https://ror.org/02drdmm93 |
| authorships[5].institutions[0].type | education |
| authorships[5].institutions[0].lineage | https://openalex.org/I200296433 |
| authorships[5].institutions[0].country_code | CN |
| authorships[5].institutions[0].display_name | Chinese Academy of Medical Sciences & Peking Union Medical College |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Man Zhao |
| authorships[5].is_corresponding | False |
| authorships[5].raw_affiliation_strings | National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, Guangdong, China |
| authorships[6].author.id | https://openalex.org/A5030200419 |
| authorships[6].author.orcid | https://orcid.org/0000-0002-4707-6550 |
| authorships[6].author.display_name | Jun Hu |
| authorships[6].countries | CN |
| authorships[6].affiliations[0].institution_ids | https://openalex.org/I157773358 |
| authorships[6].affiliations[0].raw_affiliation_string | School of Electronics and Communication Engineering, Sun Yat-sen University, Shenzhen, Guangdong, China |
| authorships[6].institutions[0].id | https://openalex.org/I157773358 |
| authorships[6].institutions[0].ror | https://ror.org/0064kty71 |
| authorships[6].institutions[0].type | education |
| authorships[6].institutions[0].lineage | https://openalex.org/I157773358 |
| authorships[6].institutions[0].country_code | CN |
| authorships[6].institutions[0].display_name | Sun Yat-sen University |
| authorships[6].author_position | middle |
| authorships[6].raw_author_name | Jun Hu |
| authorships[6].is_corresponding | False |
| authorships[6].raw_affiliation_strings | School of Electronics and Communication Engineering, Sun Yat-sen University, Shenzhen, Guangdong, China |
| authorships[7].author.id | https://openalex.org/A5063815619 |
| authorships[7].author.orcid | https://orcid.org/0009-0007-6758-058X |
| authorships[7].author.display_name | Ningze Zhong |
| authorships[7].countries | CN |
| authorships[7].affiliations[0].institution_ids | https://openalex.org/I157773358 |
| authorships[7].affiliations[0].raw_affiliation_string | School of Electronics and Communication Engineering, Sun Yat-sen University, Shenzhen, Guangdong, China |
| authorships[7].institutions[0].id | https://openalex.org/I157773358 |
| authorships[7].institutions[0].ror | https://ror.org/0064kty71 |
| authorships[7].institutions[0].type | education |
| authorships[7].institutions[0].lineage | https://openalex.org/I157773358 |
| authorships[7].institutions[0].country_code | CN |
| authorships[7].institutions[0].display_name | Sun Yat-sen University |
| authorships[7].author_position | middle |
| authorships[7].raw_author_name | Ningze Zhong |
| authorships[7].is_corresponding | False |
| authorships[7].raw_affiliation_strings | School of Electronics and Communication Engineering, Sun Yat-sen University, Shenzhen, Guangdong, China |
| authorships[8].author.id | https://openalex.org/A5100758871 |
| authorships[8].author.orcid | https://orcid.org/0000-0003-0935-3999 |
| authorships[8].author.display_name | Wei Liu |
| authorships[8].countries | US |
| authorships[8].affiliations[0].institution_ids | https://openalex.org/I4210146710 |
| authorships[8].affiliations[0].raw_affiliation_string | Department of Radiation Oncology, Mayo Clinic Arizona, Phoenix, AZ, USA |
| authorships[8].institutions[0].id | https://openalex.org/I4210146710 |
| authorships[8].institutions[0].ror | https://ror.org/03zzw1w08 |
| authorships[8].institutions[0].type | healthcare |
| authorships[8].institutions[0].lineage | https://openalex.org/I1330342723, https://openalex.org/I4210146710 |
| authorships[8].institutions[0].country_code | US |
| authorships[8].institutions[0].display_name | Mayo Clinic in Florida |
| authorships[8].author_position | middle |
| authorships[8].raw_author_name | Wei Liu |
| authorships[8].is_corresponding | False |
| authorships[8].raw_affiliation_strings | Department of Radiation Oncology, Mayo Clinic Arizona, Phoenix, AZ, USA |
| authorships[9].author.id | https://openalex.org/A5025580085 |
| authorships[9].author.orcid | https://orcid.org/0000-0002-2037-5630 |
| authorships[9].author.display_name | Chenbin Liu |
| authorships[9].countries | CN |
| authorships[9].affiliations[0].institution_ids | https://openalex.org/I200296433 |
| authorships[9].affiliations[0].raw_affiliation_string | National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, Guangdong, China |
| authorships[9].institutions[0].id | https://openalex.org/I200296433 |
| authorships[9].institutions[0].ror | https://ror.org/02drdmm93 |
| authorships[9].institutions[0].type | education |
| authorships[9].institutions[0].lineage | https://openalex.org/I200296433 |
| authorships[9].institutions[0].country_code | CN |
| authorships[9].institutions[0].display_name | Chinese Academy of Medical Sciences & Peking Union Medical College |
| authorships[9].author_position | last |
| authorships[9].raw_author_name | Chenbin Liu |
| authorships[9].is_corresponding | False |
| authorships[9].raw_affiliation_strings | National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, Guangdong, China |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.1177/15330338251345895 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Streamlining Thoracic Radiotherapy Quality assurance: One-Class Classification for Automated OAR Contour Assessment |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-23T05:10:03.516525 |
| primary_topic.id | https://openalex.org/T14510 |
| primary_topic.field.id | https://openalex.org/fields/22 |
| primary_topic.field.display_name | Engineering |
| primary_topic.score | 0.9998000264167786 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2204 |
| primary_topic.subfield.display_name | Biomedical Engineering |
| primary_topic.display_name | Medical Imaging and Analysis |
| related_works | https://openalex.org/W2905433371, https://openalex.org/W2888392564, https://openalex.org/W4310278675, https://openalex.org/W4388422664, https://openalex.org/W4390569940, https://openalex.org/W4361193272, https://openalex.org/W2963326959, https://openalex.org/W4388685194, https://openalex.org/W4312407344, https://openalex.org/W2074765259 |
| cited_by_count | 0 |
| locations_count | 3 |
| best_oa_location.id | doi:10.1177/15330338251345895 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S2955411 |
| best_oa_location.source.issn | 1533-0338, 1533-0346 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 1533-0338 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | Technology in Cancer Research & Treatment |
| best_oa_location.source.host_organization | https://openalex.org/P4310320017 |
| best_oa_location.source.host_organization_name | SAGE Publishing |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310320017 |
| best_oa_location.source.host_organization_lineage_names | SAGE Publishing |
| best_oa_location.license | cc-by-nc |
| best_oa_location.pdf_url | |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by-nc |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Technology in Cancer Research & Treatment |
| best_oa_location.landing_page_url | https://doi.org/10.1177/15330338251345895 |
| primary_location.id | doi:10.1177/15330338251345895 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S2955411 |
| primary_location.source.issn | 1533-0338, 1533-0346 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 1533-0338 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | Technology in Cancer Research & Treatment |
| primary_location.source.host_organization | https://openalex.org/P4310320017 |
| primary_location.source.host_organization_name | SAGE Publishing |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310320017 |
| primary_location.source.host_organization_lineage_names | SAGE Publishing |
| primary_location.license | cc-by-nc |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by-nc |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Technology in Cancer Research & Treatment |
| primary_location.landing_page_url | https://doi.org/10.1177/15330338251345895 |
| publication_date | 2025-05-01 |
| publication_year | 2025 |
| referenced_works | https://openalex.org/W2345933175, https://openalex.org/W4403121878, https://openalex.org/W2152729363, https://openalex.org/W3033452840, https://openalex.org/W1998070036, https://openalex.org/W1901129140, https://openalex.org/W4388840350, https://openalex.org/W2464708700, https://openalex.org/W2962914239, https://openalex.org/W2963881378, https://openalex.org/W2301358467, https://openalex.org/W2412782625, https://openalex.org/W2608353599, https://openalex.org/W2963150697, https://openalex.org/W4391642658, https://openalex.org/W3196517272, https://openalex.org/W1909740415, https://openalex.org/W4205660560, https://openalex.org/W2146917638, https://openalex.org/W2954548739, https://openalex.org/W4295938843, https://openalex.org/W4280570209, https://openalex.org/W3027179809, https://openalex.org/W4320857529, https://openalex.org/W2127668516, https://openalex.org/W2132870739, https://openalex.org/W3017404194, https://openalex.org/W2888538030, https://openalex.org/W1509073079, https://openalex.org/W2153431772, https://openalex.org/W2194775991, https://openalex.org/W2790417448 |
| referenced_works_count | 32 |
| abstract_inverted_index.. | 173 |
| abstract_inverted_index.A | 87 |
| abstract_inverted_index.a | 93, 97, 208 |
| abstract_inverted_index.n | 158 |
| abstract_inverted_index.It | 174 |
| abstract_inverted_index.QA | 18, 38, 214 |
| abstract_inverted_index.To | 113 |
| abstract_inverted_index.an | 36, 45, 204 |
| abstract_inverted_index.as | 92, 108, 135, 161 |
| abstract_inverted_index.by | 8 |
| abstract_inverted_index.in | 13, 48, 58, 178 |
| abstract_inverted_index.is | 11, 19 |
| abstract_inverted_index.of | 82, 182, 224 |
| abstract_inverted_index.on | 234 |
| abstract_inverted_index.or | 110 |
| abstract_inverted_index.to | 24, 105, 212 |
| abstract_inverted_index.we | 117 |
| abstract_inverted_index.95% | 141 |
| abstract_inverted_index.OAR | 216 |
| abstract_inverted_index.Our | 200 |
| abstract_inverted_index.The | 54, 151 |
| abstract_inverted_index.Two | 80 |
| abstract_inverted_index.and | 22, 32, 52, 72, 77, 96, 123, 126, 132, 145, 164, 196 |
| abstract_inverted_index.for | 5, 40, 215 |
| abstract_inverted_index.the | 64, 115, 167, 232 |
| abstract_inverted_index.was | 61, 90, 103 |
| abstract_inverted_index.(QA) | 4 |
| abstract_inverted_index.AAPM | 65 |
| abstract_inverted_index.Dice | 137 |
| abstract_inverted_index.This | 218 |
| abstract_inverted_index.area | 165 |
| abstract_inverted_index.data | 56 |
| abstract_inverted_index.from | 63 |
| abstract_inverted_index.high | 187, 228 |
| abstract_inverted_index.left | 71 |
| abstract_inverted_index.mean | 146 |
| abstract_inverted_index.need | 47 |
| abstract_inverted_index.such | 134, 160 |
| abstract_inverted_index.this | 59 |
| abstract_inverted_index.used | 57, 91 |
| abstract_inverted_index.were | 85, 191 |
| abstract_inverted_index.with | 207, 227 |
| abstract_inverted_index.(AUC) | 172 |
| abstract_inverted_index.(OAR) | 84 |
| abstract_inverted_index.cord. | 79 |
| abstract_inverted_index.curve | 171 |
| abstract_inverted_index.model | 154, 202 |
| abstract_inverted_index.prone | 23 |
| abstract_inverted_index.right | 73 |
| abstract_inverted_index.study | 60 |
| abstract_inverted_index.these | 41 |
| abstract_inverted_index.types | 181, 223 |
| abstract_inverted_index.under | 166 |
| abstract_inverted_index.unmet | 46 |
| abstract_inverted_index.using | 121 |
| abstract_inverted_index.while | 185 |
| abstract_inverted_index.(DSC), | 140 |
| abstract_inverted_index.(MSD). | 149 |
| abstract_inverted_index.Manual | 17 |
| abstract_inverted_index.OC-SVM | 153 |
| abstract_inverted_index.Strong | 189 |
| abstract_inverted_index.binary | 156 |
| abstract_inverted_index.burden | 233 |
| abstract_inverted_index.during | 236 |
| abstract_inverted_index.errors | 184, 226 |
| abstract_inverted_index.groups | 81 |
| abstract_inverted_index.heart, | 75 |
| abstract_inverted_index.limits | 131, 195 |
| abstract_inverted_index.lungs, | 74 |
| abstract_inverted_index.spinal | 78 |
| abstract_inverted_index.vector | 100 |
| abstract_inverted_index.(HD95), | 144 |
| abstract_inverted_index.Methods | 53 |
| abstract_inverted_index.Purpose | 0 |
| abstract_inverted_index.Results | 150 |
| abstract_inverted_index.between | 129, 193 |
| abstract_inverted_index.contour | 183, 197, 225 |
| abstract_inverted_index.derived | 62 |
| abstract_inverted_index.detects | 221 |
| abstract_inverted_index.diverse | 222 |
| abstract_inverted_index.feature | 94 |
| abstract_inverted_index.machine | 101 |
| abstract_inverted_index.metrics | 133, 159 |
| abstract_inverted_index.network | 89 |
| abstract_inverted_index.patient | 55 |
| abstract_inverted_index.process | 39 |
| abstract_inverted_index.quality | 2 |
| abstract_inverted_index.reduces | 29 |
| abstract_inverted_index.remains | 44 |
| abstract_inverted_index.support | 99 |
| abstract_inverted_index.surface | 147 |
| abstract_inverted_index.various | 180 |
| abstract_inverted_index.volume, | 136 |
| abstract_inverted_index.(OC-SVM) | 102 |
| abstract_inverted_index.However, | 35 |
| abstract_inverted_index.Thoracic | 66 |
| abstract_inverted_index.accuracy | 163 |
| abstract_inverted_index.approach | 219 |
| abstract_inverted_index.assessed | 127 |
| abstract_inverted_index.automate | 213 |
| abstract_inverted_index.balanced | 162 |
| abstract_inverted_index.classify | 106 |
| abstract_inverted_index.clinical | 49 |
| abstract_inverted_index.contours | 6, 43, 107, 120 |
| abstract_inverted_index.critical | 12 |
| abstract_inverted_index.dataset, | 69 |
| abstract_inverted_index.distance | 143, 148 |
| abstract_inverted_index.employed | 104 |
| abstract_inverted_index.evaluate | 114 |
| abstract_inverted_index.improves | 33 |
| abstract_inverted_index.metrics. | 198 |
| abstract_inverted_index.observed | 192 |
| abstract_inverted_index.proposed | 152, 201 |
| abstract_inverted_index.quality. | 112 |
| abstract_inverted_index.receiver | 168 |
| abstract_inverted_index.reducing | 231 |
| abstract_inverted_index.resizing | 124 |
| abstract_inverted_index.superior | 176 |
| abstract_inverted_index.tedious, | 20 |
| abstract_inverted_index.workload | 31 |
| abstract_inverted_index.Automatic | 27 |
| abstract_inverted_index.Challenge | 68 |
| abstract_inverted_index.Hausdorff | 142 |
| abstract_inverted_index.Materials | 51 |
| abstract_inverted_index.accuracy, | 229 |
| abstract_inverted_index.assurance | 3 |
| abstract_inverted_index.attention | 205 |
| abstract_inverted_index.automatic | 9, 42 |
| abstract_inverted_index.detecting | 179 |
| abstract_inverted_index.detection | 130, 194 |
| abstract_inverted_index.effective | 37 |
| abstract_inverted_index.framework | 211 |
| abstract_inverted_index.generated | 7, 118 |
| abstract_inverted_index.including | 70 |
| abstract_inverted_index.mechanism | 206 |
| abstract_inverted_index.one-class | 98, 209 |
| abstract_inverted_index.operating | 169 |
| abstract_inverted_index.physician | 30 |
| abstract_inverted_index.planning. | 16, 238 |
| abstract_inverted_index.practice. | 50 |
| abstract_inverted_index.treatment | 15 |
| abstract_inverted_index.‘low’ | 111 |
| abstract_inverted_index.Automating | 1 |
| abstract_inverted_index.Conclusion | 199 |
| abstract_inverted_index.ResNet-152 | 88 |
| abstract_inverted_index.algorithms | 10 |
| abstract_inverted_index.esophagus, | 76 |
| abstract_inverted_index.extractor, | 95 |
| abstract_inverted_index.generated. | 86 |
| abstract_inverted_index.integrates | 203 |
| abstract_inverted_index.physicians | 235 |
| abstract_inverted_index.similarity | 138 |
| abstract_inverted_index.subjective | 25 |
| abstract_inverted_index.techniques | 125 |
| abstract_inverted_index.‘high’ | 109 |
| abstract_inverted_index.classifiers | 157 |
| abstract_inverted_index.coefficient | 139 |
| abstract_inverted_index.effectively | 220 |
| abstract_inverted_index.low-quality | 119 |
| abstract_inverted_index.maintaining | 186 |
| abstract_inverted_index.performance | 177 |
| abstract_inverted_index.translation | 122 |
| abstract_inverted_index.consistency. | 34 |
| abstract_inverted_index.correlations | 128, 190 |
| abstract_inverted_index.demonstrated | 175 |
| abstract_inverted_index.experiences. | 26 |
| abstract_inverted_index.outperformed | 155 |
| abstract_inverted_index.radiotherapy | 14, 237 |
| abstract_inverted_index.segmentation | 28 |
| abstract_inverted_index.delineations. | 217 |
| abstract_inverted_index.organ-at-risk | 83 |
| abstract_inverted_index.significantly | 230 |
| abstract_inverted_index.characteristic | 170 |
| abstract_inverted_index.classification | 210 |
| abstract_inverted_index.time-consuming, | 21 |
| abstract_inverted_index.Auto-Segmentation | 67 |
| abstract_inverted_index.generalizability, | 116 |
| abstract_inverted_index.interpretability. | 188 |
| cited_by_percentile_year | |
| countries_distinct_count | 3 |
| institutions_distinct_count | 10 |
| citation_normalized_percentile.value | 0.18841853 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |