Stress Field Prediction of Unidirectional Fibre-Reinforced Polymer Composites Using Convolutional Neural Network (Cnn) Trained on Physically Meaningful Data Article Swipe
Siyu Zhao
,
Xiaoxuan Ding
,
Jianqiao Ye
,
Xiaonan Hou
·
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.2139/ssrn.5272545
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.2139/ssrn.5272545
Related Topics
Concepts
Metadata
- Type
- preprint
- Language
- en
- Landing Page
- https://doi.org/10.2139/ssrn.5272545
- OA Status
- green
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4410816635
All OpenAlex metadata
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4410816635Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.2139/ssrn.5272545Digital Object Identifier
- Title
-
Stress Field Prediction of Unidirectional Fibre-Reinforced Polymer Composites Using Convolutional Neural Network (Cnn) Trained on Physically Meaningful DataWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-01-01Full publication date if available
- Authors
-
Siyu Zhao, Xiaoxuan Ding, Jianqiao Ye, Xiaonan HouList of authors in order
- Landing page
-
https://doi.org/10.2139/ssrn.5272545Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.2139/ssrn.5272545Direct OA link when available
- Concepts
-
Convolutional neural network, Composite material, Field (mathematics), Stress field, Materials science, Artificial neural network, Stress (linguistics), Computer science, Artificial intelligence, Structural engineering, Engineering, Mathematics, Finite element method, Pure mathematics, Philosophy, LinguisticsTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4410816635 |
|---|---|
| doi | https://doi.org/10.2139/ssrn.5272545 |
| ids.doi | https://doi.org/10.2139/ssrn.5272545 |
| ids.openalex | https://openalex.org/W4410816635 |
| fwci | 0.0 |
| type | preprint |
| title | Stress Field Prediction of Unidirectional Fibre-Reinforced Polymer Composites Using Convolutional Neural Network (Cnn) Trained on Physically Meaningful Data |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T12682 |
| topics[0].field.id | https://openalex.org/fields/23 |
| topics[0].field.display_name | Environmental Science |
| topics[0].score | 0.9544000029563904 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2310 |
| topics[0].subfield.display_name | Pollution |
| topics[0].display_name | Smart Materials for Construction |
| topics[1].id | https://openalex.org/T10687 |
| topics[1].field.id | https://openalex.org/fields/22 |
| topics[1].field.display_name | Engineering |
| topics[1].score | 0.9283000230789185 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2205 |
| topics[1].subfield.display_name | Civil and Structural Engineering |
| topics[1].display_name | Innovative concrete reinforcement materials |
| topics[2].id | https://openalex.org/T10534 |
| topics[2].field.id | https://openalex.org/fields/22 |
| topics[2].field.display_name | Engineering |
| topics[2].score | 0.9240000247955322 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2205 |
| topics[2].subfield.display_name | Civil and Structural Engineering |
| topics[2].display_name | Structural Health Monitoring Techniques |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C81363708 |
| concepts[0].level | 2 |
| concepts[0].score | 0.7570425271987915 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q17084460 |
| concepts[0].display_name | Convolutional neural network |
| concepts[1].id | https://openalex.org/C159985019 |
| concepts[1].level | 1 |
| concepts[1].score | 0.5978431701660156 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q181790 |
| concepts[1].display_name | Composite material |
| concepts[2].id | https://openalex.org/C9652623 |
| concepts[2].level | 2 |
| concepts[2].score | 0.5158690214157104 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q190109 |
| concepts[2].display_name | Field (mathematics) |
| concepts[3].id | https://openalex.org/C2778414698 |
| concepts[3].level | 3 |
| concepts[3].score | 0.5150208473205566 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q7623438 |
| concepts[3].display_name | Stress field |
| concepts[4].id | https://openalex.org/C192562407 |
| concepts[4].level | 0 |
| concepts[4].score | 0.49592217803001404 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q228736 |
| concepts[4].display_name | Materials science |
| concepts[5].id | https://openalex.org/C50644808 |
| concepts[5].level | 2 |
| concepts[5].score | 0.47778233885765076 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q192776 |
| concepts[5].display_name | Artificial neural network |
| concepts[6].id | https://openalex.org/C21036866 |
| concepts[6].level | 2 |
| concepts[6].score | 0.4644142985343933 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q181767 |
| concepts[6].display_name | Stress (linguistics) |
| concepts[7].id | https://openalex.org/C41008148 |
| concepts[7].level | 0 |
| concepts[7].score | 0.35908645391464233 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[7].display_name | Computer science |
| concepts[8].id | https://openalex.org/C154945302 |
| concepts[8].level | 1 |
| concepts[8].score | 0.3222770392894745 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[8].display_name | Artificial intelligence |
| concepts[9].id | https://openalex.org/C66938386 |
| concepts[9].level | 1 |
| concepts[9].score | 0.26953211426734924 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q633538 |
| concepts[9].display_name | Structural engineering |
| concepts[10].id | https://openalex.org/C127413603 |
| concepts[10].level | 0 |
| concepts[10].score | 0.16096800565719604 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q11023 |
| concepts[10].display_name | Engineering |
| concepts[11].id | https://openalex.org/C33923547 |
| concepts[11].level | 0 |
| concepts[11].score | 0.14582309126853943 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[11].display_name | Mathematics |
| concepts[12].id | https://openalex.org/C135628077 |
| concepts[12].level | 2 |
| concepts[12].score | 0.14399397373199463 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q220184 |
| concepts[12].display_name | Finite element method |
| concepts[13].id | https://openalex.org/C202444582 |
| concepts[13].level | 1 |
| concepts[13].score | 0.0 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q837863 |
| concepts[13].display_name | Pure mathematics |
| concepts[14].id | https://openalex.org/C138885662 |
| concepts[14].level | 0 |
| concepts[14].score | 0.0 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q5891 |
| concepts[14].display_name | Philosophy |
| concepts[15].id | https://openalex.org/C41895202 |
| concepts[15].level | 1 |
| concepts[15].score | 0.0 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q8162 |
| concepts[15].display_name | Linguistics |
| keywords[0].id | https://openalex.org/keywords/convolutional-neural-network |
| keywords[0].score | 0.7570425271987915 |
| keywords[0].display_name | Convolutional neural network |
| keywords[1].id | https://openalex.org/keywords/composite-material |
| keywords[1].score | 0.5978431701660156 |
| keywords[1].display_name | Composite material |
| keywords[2].id | https://openalex.org/keywords/field |
| keywords[2].score | 0.5158690214157104 |
| keywords[2].display_name | Field (mathematics) |
| keywords[3].id | https://openalex.org/keywords/stress-field |
| keywords[3].score | 0.5150208473205566 |
| keywords[3].display_name | Stress field |
| keywords[4].id | https://openalex.org/keywords/materials-science |
| keywords[4].score | 0.49592217803001404 |
| keywords[4].display_name | Materials science |
| keywords[5].id | https://openalex.org/keywords/artificial-neural-network |
| keywords[5].score | 0.47778233885765076 |
| keywords[5].display_name | Artificial neural network |
| keywords[6].id | https://openalex.org/keywords/stress |
| keywords[6].score | 0.4644142985343933 |
| keywords[6].display_name | Stress (linguistics) |
| keywords[7].id | https://openalex.org/keywords/computer-science |
| keywords[7].score | 0.35908645391464233 |
| keywords[7].display_name | Computer science |
| keywords[8].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[8].score | 0.3222770392894745 |
| keywords[8].display_name | Artificial intelligence |
| keywords[9].id | https://openalex.org/keywords/structural-engineering |
| keywords[9].score | 0.26953211426734924 |
| keywords[9].display_name | Structural engineering |
| keywords[10].id | https://openalex.org/keywords/engineering |
| keywords[10].score | 0.16096800565719604 |
| keywords[10].display_name | Engineering |
| keywords[11].id | https://openalex.org/keywords/mathematics |
| keywords[11].score | 0.14582309126853943 |
| keywords[11].display_name | Mathematics |
| keywords[12].id | https://openalex.org/keywords/finite-element-method |
| keywords[12].score | 0.14399397373199463 |
| keywords[12].display_name | Finite element method |
| language | en |
| locations[0].id | doi:10.2139/ssrn.5272545 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4210172589 |
| locations[0].source.issn | 1556-5068 |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 1556-5068 |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | SSRN Electronic Journal |
| locations[0].source.host_organization | https://openalex.org/I1318003438 |
| locations[0].source.host_organization_name | RELX Group (Netherlands) |
| locations[0].source.host_organization_lineage | https://openalex.org/I1318003438 |
| locations[0].license | |
| locations[0].pdf_url | |
| locations[0].version | acceptedVersion |
| locations[0].raw_type | posted-content |
| locations[0].license_id | |
| locations[0].is_accepted | True |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | https://doi.org/10.2139/ssrn.5272545 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5101476543 |
| authorships[0].author.orcid | https://orcid.org/0009-0008-6496-645X |
| authorships[0].author.display_name | Siyu Zhao |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Siyu Zhao |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5002411589 |
| authorships[1].author.orcid | https://orcid.org/0009-0000-8281-0143 |
| authorships[1].author.display_name | Xiaoxuan Ding |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Xiaoxuan Ding |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5019800187 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-1039-1944 |
| authorships[2].author.display_name | Jianqiao Ye |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Jianqiao Ye |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5046174575 |
| authorships[3].author.orcid | https://orcid.org/0000-0003-2635-9188 |
| authorships[3].author.display_name | Xiaonan Hou |
| authorships[3].author_position | last |
| authorships[3].raw_author_name | Xiaonan Hou |
| authorships[3].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.2139/ssrn.5272545 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Stress Field Prediction of Unidirectional Fibre-Reinforced Polymer Composites Using Convolutional Neural Network (Cnn) Trained on Physically Meaningful Data |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T12682 |
| primary_topic.field.id | https://openalex.org/fields/23 |
| primary_topic.field.display_name | Environmental Science |
| primary_topic.score | 0.9544000029563904 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2310 |
| primary_topic.subfield.display_name | Pollution |
| primary_topic.display_name | Smart Materials for Construction |
| related_works | https://openalex.org/W4391621807, https://openalex.org/W4321487865, https://openalex.org/W2367041160, https://openalex.org/W3145169879, https://openalex.org/W3207678828, https://openalex.org/W1549613661, https://openalex.org/W2348222020, https://openalex.org/W2377789121, https://openalex.org/W4292566969, https://openalex.org/W2095543974 |
| cited_by_count | 0 |
| locations_count | 1 |
| best_oa_location.id | doi:10.2139/ssrn.5272545 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4210172589 |
| best_oa_location.source.issn | 1556-5068 |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 1556-5068 |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | SSRN Electronic Journal |
| best_oa_location.source.host_organization | https://openalex.org/I1318003438 |
| best_oa_location.source.host_organization_name | RELX Group (Netherlands) |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I1318003438 |
| best_oa_location.license | |
| best_oa_location.pdf_url | |
| best_oa_location.version | acceptedVersion |
| best_oa_location.raw_type | posted-content |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | https://doi.org/10.2139/ssrn.5272545 |
| primary_location.id | doi:10.2139/ssrn.5272545 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4210172589 |
| primary_location.source.issn | 1556-5068 |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 1556-5068 |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | SSRN Electronic Journal |
| primary_location.source.host_organization | https://openalex.org/I1318003438 |
| primary_location.source.host_organization_name | RELX Group (Netherlands) |
| primary_location.source.host_organization_lineage | https://openalex.org/I1318003438 |
| primary_location.license | |
| primary_location.pdf_url | |
| primary_location.version | acceptedVersion |
| primary_location.raw_type | posted-content |
| primary_location.license_id | |
| primary_location.is_accepted | True |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | https://doi.org/10.2139/ssrn.5272545 |
| publication_date | 2025-01-01 |
| publication_year | 2025 |
| referenced_works_count | 0 |
| abstract_inverted_index | |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 4 |
| citation_normalized_percentile.value | 0.17449 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |