Stress representations for tensor basis neural networks: alternative formulations to Finger-Rivlin-Ericksen Article Swipe
YOU?
·
· 2023
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2308.11080
Data-driven constitutive modeling frameworks based on neural networks and classical representation theorems have recently gained considerable attention due to their ability to easily incorporate constitutive constraints and their excellent generalization performance. In these models, the stress prediction follows from a linear combination of invariant-dependent coefficient functions and known tensor basis generators. However, thus far the formulations have been limited to stress representations based on the classical Rivlin and Ericksen form, while the performance of alternative representations has yet to be investigated. In this work, we survey a variety of tensor basis neural network models for modeling hyperelastic materials in a finite deformation context, including a number of so far unexplored formulations which use theoretically equivalent invariants and generators to Finger-Rivlin-Ericksen. Furthermore, we compare potential-based and coefficient-based approaches, as well as different calibration techniques. Nine variants are tested against both noisy and noiseless datasets for three different materials. Theoretical and practical insights into the performance of each formulation are given.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2308.11080
- https://arxiv.org/pdf/2308.11080
- OA Status
- green
- Cited By
- 1
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4386113911
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4386113911Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2308.11080Digital Object Identifier
- Title
-
Stress representations for tensor basis neural networks: alternative formulations to Finger-Rivlin-EricksenWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2023Year of publication
- Publication date
-
2023-08-21Full publication date if available
- Authors
-
Jan N. Fuhg, Nikolaos Bouklas, Reese E. JonesList of authors in order
- Landing page
-
https://arxiv.org/abs/2308.11080Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2308.11080Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2308.11080Direct OA link when available
- Concepts
-
Hyperelastic material, Generalization, Artificial neural network, Tensor (intrinsic definition), Invariant (physics), Context (archaeology), Representation (politics), Computer science, Basis (linear algebra), Cauchy elastic material, Applied mathematics, Algorithm, Mathematics, Constitutive equation, Artificial intelligence, Finite element method, Mathematical analysis, Pure mathematics, Geometry, Physics, Paleontology, Mathematical physics, Politics, Biology, Thermodynamics, Law, Political scienceTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
1Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 1Per-year citation counts (last 5 years)
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4386113911 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2308.11080 |
| ids.doi | https://doi.org/10.48550/arxiv.2308.11080 |
| ids.openalex | https://openalex.org/W4386113911 |
| fwci | |
| type | preprint |
| title | Stress representations for tensor basis neural networks: alternative formulations to Finger-Rivlin-Ericksen |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T11366 |
| topics[0].field.id | https://openalex.org/fields/22 |
| topics[0].field.display_name | Engineering |
| topics[0].score | 0.9987999796867371 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2204 |
| topics[0].subfield.display_name | Biomedical Engineering |
| topics[0].display_name | Elasticity and Material Modeling |
| topics[1].id | https://openalex.org/T11206 |
| topics[1].field.id | https://openalex.org/fields/31 |
| topics[1].field.display_name | Physics and Astronomy |
| topics[1].score | 0.9890999794006348 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/3109 |
| topics[1].subfield.display_name | Statistical and Nonlinear Physics |
| topics[1].display_name | Model Reduction and Neural Networks |
| topics[2].id | https://openalex.org/T12303 |
| topics[2].field.id | https://openalex.org/fields/26 |
| topics[2].field.display_name | Mathematics |
| topics[2].score | 0.9157000184059143 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2605 |
| topics[2].subfield.display_name | Computational Mathematics |
| topics[2].display_name | Tensor decomposition and applications |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C147370603 |
| concepts[0].level | 3 |
| concepts[0].score | 0.8794397115707397 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q3801506 |
| concepts[0].display_name | Hyperelastic material |
| concepts[1].id | https://openalex.org/C177148314 |
| concepts[1].level | 2 |
| concepts[1].score | 0.6261906623840332 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q170084 |
| concepts[1].display_name | Generalization |
| concepts[2].id | https://openalex.org/C50644808 |
| concepts[2].level | 2 |
| concepts[2].score | 0.6161866188049316 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q192776 |
| concepts[2].display_name | Artificial neural network |
| concepts[3].id | https://openalex.org/C155281189 |
| concepts[3].level | 2 |
| concepts[3].score | 0.6048145294189453 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q3518150 |
| concepts[3].display_name | Tensor (intrinsic definition) |
| concepts[4].id | https://openalex.org/C190470478 |
| concepts[4].level | 2 |
| concepts[4].score | 0.5467516183853149 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q2370229 |
| concepts[4].display_name | Invariant (physics) |
| concepts[5].id | https://openalex.org/C2779343474 |
| concepts[5].level | 2 |
| concepts[5].score | 0.5378047823905945 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q3109175 |
| concepts[5].display_name | Context (archaeology) |
| concepts[6].id | https://openalex.org/C2776359362 |
| concepts[6].level | 3 |
| concepts[6].score | 0.5204118490219116 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q2145286 |
| concepts[6].display_name | Representation (politics) |
| concepts[7].id | https://openalex.org/C41008148 |
| concepts[7].level | 0 |
| concepts[7].score | 0.500847578048706 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[7].display_name | Computer science |
| concepts[8].id | https://openalex.org/C12426560 |
| concepts[8].level | 2 |
| concepts[8].score | 0.48963218927383423 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q189569 |
| concepts[8].display_name | Basis (linear algebra) |
| concepts[9].id | https://openalex.org/C72746482 |
| concepts[9].level | 4 |
| concepts[9].score | 0.4725708067417145 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q5054339 |
| concepts[9].display_name | Cauchy elastic material |
| concepts[10].id | https://openalex.org/C28826006 |
| concepts[10].level | 1 |
| concepts[10].score | 0.40416133403778076 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q33521 |
| concepts[10].display_name | Applied mathematics |
| concepts[11].id | https://openalex.org/C11413529 |
| concepts[11].level | 1 |
| concepts[11].score | 0.38271671533584595 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q8366 |
| concepts[11].display_name | Algorithm |
| concepts[12].id | https://openalex.org/C33923547 |
| concepts[12].level | 0 |
| concepts[12].score | 0.35728299617767334 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[12].display_name | Mathematics |
| concepts[13].id | https://openalex.org/C202973686 |
| concepts[13].level | 3 |
| concepts[13].score | 0.3385109305381775 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q1937401 |
| concepts[13].display_name | Constitutive equation |
| concepts[14].id | https://openalex.org/C154945302 |
| concepts[14].level | 1 |
| concepts[14].score | 0.29173484444618225 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[14].display_name | Artificial intelligence |
| concepts[15].id | https://openalex.org/C135628077 |
| concepts[15].level | 2 |
| concepts[15].score | 0.2833520770072937 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q220184 |
| concepts[15].display_name | Finite element method |
| concepts[16].id | https://openalex.org/C134306372 |
| concepts[16].level | 1 |
| concepts[16].score | 0.16601267457008362 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q7754 |
| concepts[16].display_name | Mathematical analysis |
| concepts[17].id | https://openalex.org/C202444582 |
| concepts[17].level | 1 |
| concepts[17].score | 0.13425463438034058 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q837863 |
| concepts[17].display_name | Pure mathematics |
| concepts[18].id | https://openalex.org/C2524010 |
| concepts[18].level | 1 |
| concepts[18].score | 0.09302517771720886 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q8087 |
| concepts[18].display_name | Geometry |
| concepts[19].id | https://openalex.org/C121332964 |
| concepts[19].level | 0 |
| concepts[19].score | 0.08786836266517639 |
| concepts[19].wikidata | https://www.wikidata.org/wiki/Q413 |
| concepts[19].display_name | Physics |
| concepts[20].id | https://openalex.org/C151730666 |
| concepts[20].level | 1 |
| concepts[20].score | 0.0 |
| concepts[20].wikidata | https://www.wikidata.org/wiki/Q7205 |
| concepts[20].display_name | Paleontology |
| concepts[21].id | https://openalex.org/C37914503 |
| concepts[21].level | 1 |
| concepts[21].score | 0.0 |
| concepts[21].wikidata | https://www.wikidata.org/wiki/Q156495 |
| concepts[21].display_name | Mathematical physics |
| concepts[22].id | https://openalex.org/C94625758 |
| concepts[22].level | 2 |
| concepts[22].score | 0.0 |
| concepts[22].wikidata | https://www.wikidata.org/wiki/Q7163 |
| concepts[22].display_name | Politics |
| concepts[23].id | https://openalex.org/C86803240 |
| concepts[23].level | 0 |
| concepts[23].score | 0.0 |
| concepts[23].wikidata | https://www.wikidata.org/wiki/Q420 |
| concepts[23].display_name | Biology |
| concepts[24].id | https://openalex.org/C97355855 |
| concepts[24].level | 1 |
| concepts[24].score | 0.0 |
| concepts[24].wikidata | https://www.wikidata.org/wiki/Q11473 |
| concepts[24].display_name | Thermodynamics |
| concepts[25].id | https://openalex.org/C199539241 |
| concepts[25].level | 1 |
| concepts[25].score | 0.0 |
| concepts[25].wikidata | https://www.wikidata.org/wiki/Q7748 |
| concepts[25].display_name | Law |
| concepts[26].id | https://openalex.org/C17744445 |
| concepts[26].level | 0 |
| concepts[26].score | 0.0 |
| concepts[26].wikidata | https://www.wikidata.org/wiki/Q36442 |
| concepts[26].display_name | Political science |
| keywords[0].id | https://openalex.org/keywords/hyperelastic-material |
| keywords[0].score | 0.8794397115707397 |
| keywords[0].display_name | Hyperelastic material |
| keywords[1].id | https://openalex.org/keywords/generalization |
| keywords[1].score | 0.6261906623840332 |
| keywords[1].display_name | Generalization |
| keywords[2].id | https://openalex.org/keywords/artificial-neural-network |
| keywords[2].score | 0.6161866188049316 |
| keywords[2].display_name | Artificial neural network |
| keywords[3].id | https://openalex.org/keywords/tensor |
| keywords[3].score | 0.6048145294189453 |
| keywords[3].display_name | Tensor (intrinsic definition) |
| keywords[4].id | https://openalex.org/keywords/invariant |
| keywords[4].score | 0.5467516183853149 |
| keywords[4].display_name | Invariant (physics) |
| keywords[5].id | https://openalex.org/keywords/context |
| keywords[5].score | 0.5378047823905945 |
| keywords[5].display_name | Context (archaeology) |
| keywords[6].id | https://openalex.org/keywords/representation |
| keywords[6].score | 0.5204118490219116 |
| keywords[6].display_name | Representation (politics) |
| keywords[7].id | https://openalex.org/keywords/computer-science |
| keywords[7].score | 0.500847578048706 |
| keywords[7].display_name | Computer science |
| keywords[8].id | https://openalex.org/keywords/basis |
| keywords[8].score | 0.48963218927383423 |
| keywords[8].display_name | Basis (linear algebra) |
| keywords[9].id | https://openalex.org/keywords/cauchy-elastic-material |
| keywords[9].score | 0.4725708067417145 |
| keywords[9].display_name | Cauchy elastic material |
| keywords[10].id | https://openalex.org/keywords/applied-mathematics |
| keywords[10].score | 0.40416133403778076 |
| keywords[10].display_name | Applied mathematics |
| keywords[11].id | https://openalex.org/keywords/algorithm |
| keywords[11].score | 0.38271671533584595 |
| keywords[11].display_name | Algorithm |
| keywords[12].id | https://openalex.org/keywords/mathematics |
| keywords[12].score | 0.35728299617767334 |
| keywords[12].display_name | Mathematics |
| keywords[13].id | https://openalex.org/keywords/constitutive-equation |
| keywords[13].score | 0.3385109305381775 |
| keywords[13].display_name | Constitutive equation |
| keywords[14].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[14].score | 0.29173484444618225 |
| keywords[14].display_name | Artificial intelligence |
| keywords[15].id | https://openalex.org/keywords/finite-element-method |
| keywords[15].score | 0.2833520770072937 |
| keywords[15].display_name | Finite element method |
| keywords[16].id | https://openalex.org/keywords/mathematical-analysis |
| keywords[16].score | 0.16601267457008362 |
| keywords[16].display_name | Mathematical analysis |
| keywords[17].id | https://openalex.org/keywords/pure-mathematics |
| keywords[17].score | 0.13425463438034058 |
| keywords[17].display_name | Pure mathematics |
| keywords[18].id | https://openalex.org/keywords/geometry |
| keywords[18].score | 0.09302517771720886 |
| keywords[18].display_name | Geometry |
| keywords[19].id | https://openalex.org/keywords/physics |
| keywords[19].score | 0.08786836266517639 |
| keywords[19].display_name | Physics |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2308.11080 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://arxiv.org/pdf/2308.11080 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2308.11080 |
| locations[1].id | doi:10.48550/arxiv.2308.11080 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | cc-by |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | https://openalex.org/licenses/cc-by |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2308.11080 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5058627053 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-5986-3770 |
| authorships[0].author.display_name | Jan N. Fuhg |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Fuhg, Jan N. |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5063820996 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-3349-5914 |
| authorships[1].author.display_name | Nikolaos Bouklas |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Bouklas, Nikolaos |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5075985796 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-2332-6279 |
| authorships[2].author.display_name | Reese E. Jones |
| authorships[2].author_position | last |
| authorships[2].raw_author_name | Jones, Reese E. |
| authorships[2].is_corresponding | False |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2308.11080 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2023-08-24T00:00:00 |
| display_name | Stress representations for tensor basis neural networks: alternative formulations to Finger-Rivlin-Ericksen |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T11366 |
| primary_topic.field.id | https://openalex.org/fields/22 |
| primary_topic.field.display_name | Engineering |
| primary_topic.score | 0.9987999796867371 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2204 |
| primary_topic.subfield.display_name | Biomedical Engineering |
| primary_topic.display_name | Elasticity and Material Modeling |
| related_works | https://openalex.org/W4205268443, https://openalex.org/W2791967653, https://openalex.org/W2807413487, https://openalex.org/W4386422326, https://openalex.org/W3081672049, https://openalex.org/W2368535188, https://openalex.org/W3142264236, https://openalex.org/W3038001940, https://openalex.org/W2028026056, https://openalex.org/W2802851124 |
| cited_by_count | 1 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 1 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2308.11080 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2308.11080 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2308.11080 |
| primary_location.id | pmh:oai:arXiv.org:2308.11080 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://arxiv.org/pdf/2308.11080 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2308.11080 |
| publication_date | 2023-08-21 |
| publication_year | 2023 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 39, 86, 99, 104 |
| abstract_inverted_index.In | 31, 81 |
| abstract_inverted_index.as | 127, 129 |
| abstract_inverted_index.be | 79 |
| abstract_inverted_index.in | 98 |
| abstract_inverted_index.of | 42, 73, 88, 106, 154 |
| abstract_inverted_index.on | 5, 63 |
| abstract_inverted_index.so | 107 |
| abstract_inverted_index.to | 18, 21, 59, 78, 118 |
| abstract_inverted_index.we | 84, 121 |
| abstract_inverted_index.and | 8, 26, 46, 67, 116, 124, 140, 148 |
| abstract_inverted_index.are | 135, 157 |
| abstract_inverted_index.due | 17 |
| abstract_inverted_index.far | 53, 108 |
| abstract_inverted_index.for | 94, 143 |
| abstract_inverted_index.has | 76 |
| abstract_inverted_index.the | 34, 54, 64, 71, 152 |
| abstract_inverted_index.use | 112 |
| abstract_inverted_index.yet | 77 |
| abstract_inverted_index.Nine | 133 |
| abstract_inverted_index.been | 57 |
| abstract_inverted_index.both | 138 |
| abstract_inverted_index.each | 155 |
| abstract_inverted_index.from | 38 |
| abstract_inverted_index.have | 12, 56 |
| abstract_inverted_index.into | 151 |
| abstract_inverted_index.this | 82 |
| abstract_inverted_index.thus | 52 |
| abstract_inverted_index.well | 128 |
| abstract_inverted_index.based | 4, 62 |
| abstract_inverted_index.basis | 49, 90 |
| abstract_inverted_index.form, | 69 |
| abstract_inverted_index.known | 47 |
| abstract_inverted_index.noisy | 139 |
| abstract_inverted_index.their | 19, 27 |
| abstract_inverted_index.these | 32 |
| abstract_inverted_index.three | 144 |
| abstract_inverted_index.which | 111 |
| abstract_inverted_index.while | 70 |
| abstract_inverted_index.work, | 83 |
| abstract_inverted_index.Rivlin | 66 |
| abstract_inverted_index.easily | 22 |
| abstract_inverted_index.finite | 100 |
| abstract_inverted_index.gained | 14 |
| abstract_inverted_index.given. | 158 |
| abstract_inverted_index.linear | 40 |
| abstract_inverted_index.models | 93 |
| abstract_inverted_index.neural | 6, 91 |
| abstract_inverted_index.number | 105 |
| abstract_inverted_index.stress | 35, 60 |
| abstract_inverted_index.survey | 85 |
| abstract_inverted_index.tensor | 48, 89 |
| abstract_inverted_index.tested | 136 |
| abstract_inverted_index.ability | 20 |
| abstract_inverted_index.against | 137 |
| abstract_inverted_index.compare | 122 |
| abstract_inverted_index.follows | 37 |
| abstract_inverted_index.limited | 58 |
| abstract_inverted_index.models, | 33 |
| abstract_inverted_index.network | 92 |
| abstract_inverted_index.variety | 87 |
| abstract_inverted_index.Ericksen | 68 |
| abstract_inverted_index.However, | 51 |
| abstract_inverted_index.context, | 102 |
| abstract_inverted_index.datasets | 142 |
| abstract_inverted_index.insights | 150 |
| abstract_inverted_index.modeling | 2, 95 |
| abstract_inverted_index.networks | 7 |
| abstract_inverted_index.recently | 13 |
| abstract_inverted_index.theorems | 11 |
| abstract_inverted_index.variants | 134 |
| abstract_inverted_index.attention | 16 |
| abstract_inverted_index.classical | 9, 65 |
| abstract_inverted_index.different | 130, 145 |
| abstract_inverted_index.excellent | 28 |
| abstract_inverted_index.functions | 45 |
| abstract_inverted_index.including | 103 |
| abstract_inverted_index.materials | 97 |
| abstract_inverted_index.noiseless | 141 |
| abstract_inverted_index.practical | 149 |
| abstract_inverted_index.equivalent | 114 |
| abstract_inverted_index.frameworks | 3 |
| abstract_inverted_index.generators | 117 |
| abstract_inverted_index.invariants | 115 |
| abstract_inverted_index.materials. | 146 |
| abstract_inverted_index.prediction | 36 |
| abstract_inverted_index.unexplored | 109 |
| abstract_inverted_index.Data-driven | 0 |
| abstract_inverted_index.Theoretical | 147 |
| abstract_inverted_index.alternative | 74 |
| abstract_inverted_index.approaches, | 126 |
| abstract_inverted_index.calibration | 131 |
| abstract_inverted_index.coefficient | 44 |
| abstract_inverted_index.combination | 41 |
| abstract_inverted_index.constraints | 25 |
| abstract_inverted_index.deformation | 101 |
| abstract_inverted_index.formulation | 156 |
| abstract_inverted_index.generators. | 50 |
| abstract_inverted_index.incorporate | 23 |
| abstract_inverted_index.performance | 72, 153 |
| abstract_inverted_index.techniques. | 132 |
| abstract_inverted_index.Furthermore, | 120 |
| abstract_inverted_index.considerable | 15 |
| abstract_inverted_index.constitutive | 1, 24 |
| abstract_inverted_index.formulations | 55, 110 |
| abstract_inverted_index.hyperelastic | 96 |
| abstract_inverted_index.performance. | 30 |
| abstract_inverted_index.investigated. | 80 |
| abstract_inverted_index.theoretically | 113 |
| abstract_inverted_index.generalization | 29 |
| abstract_inverted_index.representation | 10 |
| abstract_inverted_index.potential-based | 123 |
| abstract_inverted_index.representations | 61, 75 |
| abstract_inverted_index.coefficient-based | 125 |
| abstract_inverted_index.invariant-dependent | 43 |
| abstract_inverted_index.Finger-Rivlin-Ericksen. | 119 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 3 |
| citation_normalized_percentile |