Strichartz estimates for orthonormal functions and probabilistic convergence of density functions of compact operators on manifolds Article Swipe
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2408.13764
In this paper, we establish some Strichartz estimates for orthonormal functions and probabilistic convergence of density functions related to compact operators on manifolds. Firstly, we present the suitable bound of $\int_{a\leq|s|\leq b}e^{isx}s^{-1+iγ}ds$ for the cases $γ\in \mathbb{R},a\geq0,b>0,$ $γ\in \mathbb{R},γ\neq0,a,b\in \mathbb{R}$ and $γ\in \mathbb{R}$, which extends the result of Page 204 of Vega (199-211,IMA Vol. Math. Appl., 42, 1992.) Secondly, we prove that $\left|γ\int_{a}^{b}e^{isx}s^{-1+iγ}ds\right|\leq C(1+|γ|)^{2}(γ\in \mathbb{R},a,b\in \mathbb{R}),$ where $C$ is independent of $γ,a, b$, which extends Lemma 1 of Bez et al. (Forum of Mathematics, Sigma, 9(2021), 1-52). Thirdly, we extend the result of Theorems 8, 9 of R. Frank, J. Sabin (Amer. J. Math. 139(2017), 1649-1691.) with the aid of the suitable bound of the above complex integrals established in this paper. Fourthly, we establish the Strichartz estimates for orthonormal functions related to Boussinesq operator on the real line for both small time interval and large time interval and on the torus with small time interval; we also establish the convergence result of some compact operators in Schatten norm. Fifthly, we establish the convergence result related to nonlinear part of the solution to some operator equations in Schatten spaces. Finally, inspired by the work of Hadama and Yamamoto (Probabilistic Strichartz estimates in Schatten classes and their applications to Hartree equation, arxiv:2311.02713v1.), for $γ_{0}\in \mathfrak{S}^{2}$, we establish the probabilistic convergence of density functions of compact operator on manifolds with full randomization, which improves the result of Corollary 1.2 of Bez et al. (Selecta Math. 26(2020), 24 pp) in the probabilistic sense.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2408.13764
- https://arxiv.org/pdf/2408.13764
- OA Status
- green
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4403555271
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4403555271Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2408.13764Digital Object Identifier
- Title
-
Strichartz estimates for orthonormal functions and probabilistic convergence of density functions of compact operators on manifoldsWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-08-25Full publication date if available
- Authors
-
Yan Wei, Jinqiao Duan, Jianhua Huang, Haoyuan Xu, Meihua YangList of authors in order
- Landing page
-
https://arxiv.org/abs/2408.13764Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2408.13764Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2408.13764Direct OA link when available
- Concepts
-
Orthonormal basis, Probabilistic logic, Convergence (economics), Mathematics, Pure mathematics, Mathematical analysis, Applied mathematics, Physics, Economics, Statistics, Economic growth, Quantum mechanicsTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4403555271 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2408.13764 |
| ids.doi | https://doi.org/10.48550/arxiv.2408.13764 |
| ids.openalex | https://openalex.org/W4403555271 |
| fwci | |
| type | preprint |
| title | Strichartz estimates for orthonormal functions and probabilistic convergence of density functions of compact operators on manifolds |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T13234 |
| topics[0].field.id | https://openalex.org/fields/26 |
| topics[0].field.display_name | Mathematics |
| topics[0].score | 0.9983999729156494 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2610 |
| topics[0].subfield.display_name | Mathematical Physics |
| topics[0].display_name | advanced mathematical theories |
| topics[1].id | https://openalex.org/T11210 |
| topics[1].field.id | https://openalex.org/fields/26 |
| topics[1].field.display_name | Mathematics |
| topics[1].score | 0.9927999973297119 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2604 |
| topics[1].subfield.display_name | Applied Mathematics |
| topics[1].display_name | Mathematical Analysis and Transform Methods |
| topics[2].id | https://openalex.org/T12100 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9876999855041504 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1703 |
| topics[2].subfield.display_name | Computational Theory and Mathematics |
| topics[2].display_name | Advanced Mathematical Modeling in Engineering |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C5806529 |
| concepts[0].level | 2 |
| concepts[0].score | 0.8412753939628601 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q2365325 |
| concepts[0].display_name | Orthonormal basis |
| concepts[1].id | https://openalex.org/C49937458 |
| concepts[1].level | 2 |
| concepts[1].score | 0.6924100518226624 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q2599292 |
| concepts[1].display_name | Probabilistic logic |
| concepts[2].id | https://openalex.org/C2777303404 |
| concepts[2].level | 2 |
| concepts[2].score | 0.6007420420646667 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q759757 |
| concepts[2].display_name | Convergence (economics) |
| concepts[3].id | https://openalex.org/C33923547 |
| concepts[3].level | 0 |
| concepts[3].score | 0.543347954750061 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[3].display_name | Mathematics |
| concepts[4].id | https://openalex.org/C202444582 |
| concepts[4].level | 1 |
| concepts[4].score | 0.45560115575790405 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q837863 |
| concepts[4].display_name | Pure mathematics |
| concepts[5].id | https://openalex.org/C134306372 |
| concepts[5].level | 1 |
| concepts[5].score | 0.4214220643043518 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q7754 |
| concepts[5].display_name | Mathematical analysis |
| concepts[6].id | https://openalex.org/C28826006 |
| concepts[6].level | 1 |
| concepts[6].score | 0.4032556414604187 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q33521 |
| concepts[6].display_name | Applied mathematics |
| concepts[7].id | https://openalex.org/C121332964 |
| concepts[7].level | 0 |
| concepts[7].score | 0.15207576751708984 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q413 |
| concepts[7].display_name | Physics |
| concepts[8].id | https://openalex.org/C162324750 |
| concepts[8].level | 0 |
| concepts[8].score | 0.10838556289672852 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q8134 |
| concepts[8].display_name | Economics |
| concepts[9].id | https://openalex.org/C105795698 |
| concepts[9].level | 1 |
| concepts[9].score | 0.09123110771179199 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q12483 |
| concepts[9].display_name | Statistics |
| concepts[10].id | https://openalex.org/C50522688 |
| concepts[10].level | 1 |
| concepts[10].score | 0.0 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q189833 |
| concepts[10].display_name | Economic growth |
| concepts[11].id | https://openalex.org/C62520636 |
| concepts[11].level | 1 |
| concepts[11].score | 0.0 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q944 |
| concepts[11].display_name | Quantum mechanics |
| keywords[0].id | https://openalex.org/keywords/orthonormal-basis |
| keywords[0].score | 0.8412753939628601 |
| keywords[0].display_name | Orthonormal basis |
| keywords[1].id | https://openalex.org/keywords/probabilistic-logic |
| keywords[1].score | 0.6924100518226624 |
| keywords[1].display_name | Probabilistic logic |
| keywords[2].id | https://openalex.org/keywords/convergence |
| keywords[2].score | 0.6007420420646667 |
| keywords[2].display_name | Convergence (economics) |
| keywords[3].id | https://openalex.org/keywords/mathematics |
| keywords[3].score | 0.543347954750061 |
| keywords[3].display_name | Mathematics |
| keywords[4].id | https://openalex.org/keywords/pure-mathematics |
| keywords[4].score | 0.45560115575790405 |
| keywords[4].display_name | Pure mathematics |
| keywords[5].id | https://openalex.org/keywords/mathematical-analysis |
| keywords[5].score | 0.4214220643043518 |
| keywords[5].display_name | Mathematical analysis |
| keywords[6].id | https://openalex.org/keywords/applied-mathematics |
| keywords[6].score | 0.4032556414604187 |
| keywords[6].display_name | Applied mathematics |
| keywords[7].id | https://openalex.org/keywords/physics |
| keywords[7].score | 0.15207576751708984 |
| keywords[7].display_name | Physics |
| keywords[8].id | https://openalex.org/keywords/economics |
| keywords[8].score | 0.10838556289672852 |
| keywords[8].display_name | Economics |
| keywords[9].id | https://openalex.org/keywords/statistics |
| keywords[9].score | 0.09123110771179199 |
| keywords[9].display_name | Statistics |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2408.13764 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2408.13764 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2408.13764 |
| locations[1].id | doi:10.48550/arxiv.2408.13764 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | cc-by |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | https://openalex.org/licenses/cc-by |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2408.13764 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5100618218 |
| authorships[0].author.orcid | https://orcid.org/0000-0003-3484-8811 |
| authorships[0].author.display_name | Yan Wei |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Yan, Wei |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5034610999 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-2077-990X |
| authorships[1].author.display_name | Jinqiao Duan |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Duan, Jinqiao |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5023443677 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-5627-6773 |
| authorships[2].author.display_name | Jianhua Huang |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Huang, Jianhua |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5033201762 |
| authorships[3].author.orcid | https://orcid.org/0000-0001-5917-373X |
| authorships[3].author.display_name | Haoyuan Xu |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Xu, Haoyuan |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5113793256 |
| authorships[4].author.orcid | |
| authorships[4].author.display_name | Meihua Yang |
| authorships[4].author_position | last |
| authorships[4].raw_author_name | Yang, Meihua |
| authorships[4].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2408.13764 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Strichartz estimates for orthonormal functions and probabilistic convergence of density functions of compact operators on manifolds |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T13234 |
| primary_topic.field.id | https://openalex.org/fields/26 |
| primary_topic.field.display_name | Mathematics |
| primary_topic.score | 0.9983999729156494 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2610 |
| primary_topic.subfield.display_name | Mathematical Physics |
| primary_topic.display_name | advanced mathematical theories |
| related_works | https://openalex.org/W4391375266, https://openalex.org/W2370850565, https://openalex.org/W2381894435, https://openalex.org/W2296214397, https://openalex.org/W2029951831, https://openalex.org/W2072372040, https://openalex.org/W3141309046, https://openalex.org/W1480409938, https://openalex.org/W2497125423, https://openalex.org/W2032552241 |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2408.13764 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2408.13764 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2408.13764 |
| primary_location.id | pmh:oai:arXiv.org:2408.13764 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2408.13764 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2408.13764 |
| publication_date | 2024-08-25 |
| publication_year | 2024 |
| referenced_works_count | 0 |
| abstract_inverted_index.1 | 76 |
| abstract_inverted_index.9 | 95 |
| abstract_inverted_index.24 | 244 |
| abstract_inverted_index.8, | 94 |
| abstract_inverted_index.In | 0 |
| abstract_inverted_index.J. | 99, 102 |
| abstract_inverted_index.R. | 97 |
| abstract_inverted_index.by | 191 |
| abstract_inverted_index.et | 79, 239 |
| abstract_inverted_index.in | 119, 166, 186, 201, 246 |
| abstract_inverted_index.is | 68 |
| abstract_inverted_index.of | 14, 29, 47, 50, 70, 77, 82, 92, 96, 109, 113, 162, 179, 194, 219, 222, 234, 237 |
| abstract_inverted_index.on | 21, 135, 149, 225 |
| abstract_inverted_index.to | 18, 132, 176, 182, 207 |
| abstract_inverted_index.we | 3, 24, 59, 88, 123, 156, 170, 214 |
| abstract_inverted_index.$C$ | 67 |
| abstract_inverted_index.1.2 | 236 |
| abstract_inverted_index.204 | 49 |
| abstract_inverted_index.42, | 56 |
| abstract_inverted_index.Bez | 78, 238 |
| abstract_inverted_index.aid | 108 |
| abstract_inverted_index.al. | 80, 240 |
| abstract_inverted_index.and | 11, 40, 144, 148, 196, 204 |
| abstract_inverted_index.b$, | 72 |
| abstract_inverted_index.for | 8, 32, 128, 139, 211 |
| abstract_inverted_index.pp) | 245 |
| abstract_inverted_index.the | 26, 33, 45, 90, 107, 110, 114, 125, 136, 150, 159, 172, 180, 192, 216, 232, 247 |
| abstract_inverted_index.Page | 48 |
| abstract_inverted_index.Vega | 51 |
| abstract_inverted_index.Vol. | 53 |
| abstract_inverted_index.also | 157 |
| abstract_inverted_index.both | 140 |
| abstract_inverted_index.full | 228 |
| abstract_inverted_index.line | 138 |
| abstract_inverted_index.part | 178 |
| abstract_inverted_index.real | 137 |
| abstract_inverted_index.some | 5, 163, 183 |
| abstract_inverted_index.that | 61 |
| abstract_inverted_index.this | 1, 120 |
| abstract_inverted_index.time | 142, 146, 154 |
| abstract_inverted_index.with | 106, 152, 227 |
| abstract_inverted_index.work | 193 |
| abstract_inverted_index.Lemma | 75 |
| abstract_inverted_index.Math. | 54, 103, 242 |
| abstract_inverted_index.Sabin | 100 |
| abstract_inverted_index.above | 115 |
| abstract_inverted_index.bound | 28, 112 |
| abstract_inverted_index.cases | 34 |
| abstract_inverted_index.large | 145 |
| abstract_inverted_index.norm. | 168 |
| abstract_inverted_index.prove | 60 |
| abstract_inverted_index.small | 141, 153 |
| abstract_inverted_index.their | 205 |
| abstract_inverted_index.torus | 151 |
| abstract_inverted_index.where | 66 |
| abstract_inverted_index.which | 43, 73, 230 |
| abstract_inverted_index.$γ,a, | 71 |
| abstract_inverted_index.$γ\in | 35, 37, 41 |
| abstract_inverted_index.(Amer. | 101 |
| abstract_inverted_index.(Forum | 81 |
| abstract_inverted_index.1-52). | 86 |
| abstract_inverted_index.1992.) | 57 |
| abstract_inverted_index.Appl., | 55 |
| abstract_inverted_index.Frank, | 98 |
| abstract_inverted_index.Hadama | 195 |
| abstract_inverted_index.Sigma, | 84 |
| abstract_inverted_index.extend | 89 |
| abstract_inverted_index.paper, | 2 |
| abstract_inverted_index.paper. | 121 |
| abstract_inverted_index.result | 46, 91, 161, 174, 233 |
| abstract_inverted_index.sense. | 249 |
| abstract_inverted_index.Hartree | 208 |
| abstract_inverted_index.classes | 203 |
| abstract_inverted_index.compact | 19, 164, 223 |
| abstract_inverted_index.complex | 116 |
| abstract_inverted_index.density | 15, 220 |
| abstract_inverted_index.extends | 44, 74 |
| abstract_inverted_index.present | 25 |
| abstract_inverted_index.related | 17, 131, 175 |
| abstract_inverted_index.spaces. | 188 |
| abstract_inverted_index.(Selecta | 241 |
| abstract_inverted_index.9(2021), | 85 |
| abstract_inverted_index.Fifthly, | 169 |
| abstract_inverted_index.Finally, | 189 |
| abstract_inverted_index.Firstly, | 23 |
| abstract_inverted_index.Schatten | 167, 187, 202 |
| abstract_inverted_index.Theorems | 93 |
| abstract_inverted_index.Thirdly, | 87 |
| abstract_inverted_index.Yamamoto | 197 |
| abstract_inverted_index.improves | 231 |
| abstract_inverted_index.inspired | 190 |
| abstract_inverted_index.interval | 143, 147 |
| abstract_inverted_index.operator | 134, 184, 224 |
| abstract_inverted_index.solution | 181 |
| abstract_inverted_index.suitable | 27, 111 |
| abstract_inverted_index.26(2020), | 243 |
| abstract_inverted_index.Corollary | 235 |
| abstract_inverted_index.Fourthly, | 122 |
| abstract_inverted_index.Secondly, | 58 |
| abstract_inverted_index.equation, | 209 |
| abstract_inverted_index.equations | 185 |
| abstract_inverted_index.establish | 4, 124, 158, 171, 215 |
| abstract_inverted_index.estimates | 7, 127, 200 |
| abstract_inverted_index.functions | 10, 16, 130, 221 |
| abstract_inverted_index.integrals | 117 |
| abstract_inverted_index.interval; | 155 |
| abstract_inverted_index.manifolds | 226 |
| abstract_inverted_index.nonlinear | 177 |
| abstract_inverted_index.operators | 20, 165 |
| abstract_inverted_index.$γ_{0}\in | 212 |
| abstract_inverted_index.139(2017), | 104 |
| abstract_inverted_index.Boussinesq | 133 |
| abstract_inverted_index.Strichartz | 6, 126, 199 |
| abstract_inverted_index.manifolds. | 22 |
| abstract_inverted_index.1649-1691.) | 105 |
| abstract_inverted_index.\mathbb{R}$ | 39 |
| abstract_inverted_index.convergence | 13, 160, 173, 218 |
| abstract_inverted_index.established | 118 |
| abstract_inverted_index.independent | 69 |
| abstract_inverted_index.orthonormal | 9, 129 |
| abstract_inverted_index.(199-211,IMA | 52 |
| abstract_inverted_index.Mathematics, | 83 |
| abstract_inverted_index.\mathbb{R}$, | 42 |
| abstract_inverted_index.applications | 206 |
| abstract_inverted_index.\mathbb{R}),$ | 65 |
| abstract_inverted_index.probabilistic | 12, 217, 248 |
| abstract_inverted_index.(Probabilistic | 198 |
| abstract_inverted_index.randomization, | 229 |
| abstract_inverted_index.\mathbb{R},a,b\in | 64 |
| abstract_inverted_index.\mathfrak{S}^{2}$, | 213 |
| abstract_inverted_index.$\int_{a\leq|s|\leq | 30 |
| abstract_inverted_index.C(1+|γ|)^{2}(γ\in | 63 |
| abstract_inverted_index.arxiv:2311.02713v1.), | 210 |
| abstract_inverted_index.b}e^{isx}s^{-1+iγ}ds$ | 31 |
| abstract_inverted_index.\mathbb{R},γ\neq0,a,b\in | 38 |
| abstract_inverted_index.\mathbb{R},a\geq0,b>0,$ | 36 |
| abstract_inverted_index.$\left|γ\int_{a}^{b}e^{isx}s^{-1+iγ}ds\right|\leq | 62 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 5 |
| citation_normalized_percentile |