Stripping flow cytometry: How many detectors do we need for bacterial identification? Article Swipe
YOU?
·
· 2017
· Open Access
·
· DOI: https://doi.org/10.1002/cyto.a.23284
Multicolor approaches are challenging for microbial flow cytometry; as flow cytometers are mainly developed for biomedical applications, modern instruments contain more detectors than needed. Some of these additional fluorescence detectors measure biological information due to spectral overlap, yet the extent to which this information is relevant for the identification of bacterial populations is ambiguous. In this paper we characterize the usefulness of these additional detectors. We propose a data‐driven detector selection method to select the smallest subset of detectors that will optimally discriminate between bacterial populations. Using a detector elimination strategy, we show that one or more detectors can be removed without loss of resolving power. A number of additional detectors are included in the final subset, which help to improve the identification of bacterial populations. Experimental data were retrieved from two types of modern cytometers with different configurations. The method reveals a clear ordering of detector importances, which depends on the instrument from which the data were retrieved. In addition, we were able to pinpoint unexpected behavior of SYBR Green I in the red spectrum. As the field of microbial flow cytometry is maturing, these results motivate the construction of a different kind of cytometric instruments for microbiologists, for which the number of detectors is reduced, but tailored toward the characteristics of microbial experiments. © 2017 International Society for Advancement of Cytometry
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1002/cyto.a.23284
- https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/cyto.a.23284
- OA Status
- bronze
- Cited By
- 22
- References
- 39
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W2769500510
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W2769500510Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1002/cyto.a.23284Digital Object Identifier
- Title
-
Stripping flow cytometry: How many detectors do we need for bacterial identification?Work title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2017Year of publication
- Publication date
-
2017-11-22Full publication date if available
- Authors
-
Peter Rubbens, Ruben Props, Cristina García‐Timermans, Nico Boon, Willem WaegemanList of authors in order
- Landing page
-
https://doi.org/10.1002/cyto.a.23284Publisher landing page
- PDF URL
-
https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/cyto.a.23284Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
bronzeOpen access status per OpenAlex
- OA URL
-
https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/cyto.a.23284Direct OA link when available
- Concepts
-
Detector, Identification (biology), Cytometry, Computer science, Flow cytometry, Biological system, Biochemical engineering, Computational biology, Physics, Biology, Ecology, Engineering, Telecommunications, GeneticsTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
22Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 2, 2024: 3, 2023: 2, 2022: 1, 2021: 5Per-year citation counts (last 5 years)
- References (count)
-
39Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W2769500510 |
|---|---|
| doi | https://doi.org/10.1002/cyto.a.23284 |
| ids.doi | https://doi.org/10.1002/cyto.a.23284 |
| ids.mag | 2769500510 |
| ids.pmid | https://pubmed.ncbi.nlm.nih.gov/29165907 |
| ids.openalex | https://openalex.org/W2769500510 |
| fwci | 1.20253239 |
| mesh[0].qualifier_ui | Q000302 |
| mesh[0].descriptor_ui | D001419 |
| mesh[0].is_major_topic | False |
| mesh[0].qualifier_name | isolation & purification |
| mesh[0].descriptor_name | Bacteria |
| mesh[1].qualifier_ui | Q000379 |
| mesh[1].descriptor_ui | D005434 |
| mesh[1].is_major_topic | False |
| mesh[1].qualifier_name | methods |
| mesh[1].descriptor_name | Flow Cytometry |
| mesh[2].qualifier_ui | Q000302 |
| mesh[2].descriptor_ui | D001419 |
| mesh[2].is_major_topic | False |
| mesh[2].qualifier_name | isolation & purification |
| mesh[2].descriptor_name | Bacteria |
| mesh[3].qualifier_ui | Q000379 |
| mesh[3].descriptor_ui | D005434 |
| mesh[3].is_major_topic | False |
| mesh[3].qualifier_name | methods |
| mesh[3].descriptor_name | Flow Cytometry |
| type | article |
| title | Stripping flow cytometry: How many detectors do we need for bacterial identification? |
| biblio.issue | 12 |
| biblio.volume | 91 |
| biblio.last_page | 1191 |
| biblio.first_page | 1184 |
| topics[0].id | https://openalex.org/T11289 |
| topics[0].field.id | https://openalex.org/fields/13 |
| topics[0].field.display_name | Biochemistry, Genetics and Molecular Biology |
| topics[0].score | 0.9925000071525574 |
| topics[0].domain.id | https://openalex.org/domains/1 |
| topics[0].domain.display_name | Life Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1312 |
| topics[0].subfield.display_name | Molecular Biology |
| topics[0].display_name | Single-cell and spatial transcriptomics |
| topics[1].id | https://openalex.org/T11393 |
| topics[1].field.id | https://openalex.org/fields/22 |
| topics[1].field.display_name | Engineering |
| topics[1].score | 0.9869999885559082 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2204 |
| topics[1].subfield.display_name | Biomedical Engineering |
| topics[1].display_name | Biosensors and Analytical Detection |
| topics[2].id | https://openalex.org/T11255 |
| topics[2].field.id | https://openalex.org/fields/22 |
| topics[2].field.display_name | Engineering |
| topics[2].score | 0.9401999711990356 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2204 |
| topics[2].subfield.display_name | Biomedical Engineering |
| topics[2].display_name | Microfluidic and Bio-sensing Technologies |
| is_xpac | False |
| apc_list.value | 3350 |
| apc_list.currency | USD |
| apc_list.value_usd | 3350 |
| apc_paid | |
| concepts[0].id | https://openalex.org/C94915269 |
| concepts[0].level | 2 |
| concepts[0].score | 0.8845115900039673 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q1834857 |
| concepts[0].display_name | Detector |
| concepts[1].id | https://openalex.org/C116834253 |
| concepts[1].level | 2 |
| concepts[1].score | 0.631077766418457 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q2039217 |
| concepts[1].display_name | Identification (biology) |
| concepts[2].id | https://openalex.org/C2780339063 |
| concepts[2].level | 3 |
| concepts[2].score | 0.5432693958282471 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q5201367 |
| concepts[2].display_name | Cytometry |
| concepts[3].id | https://openalex.org/C41008148 |
| concepts[3].level | 0 |
| concepts[3].score | 0.5083622336387634 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[3].display_name | Computer science |
| concepts[4].id | https://openalex.org/C553184892 |
| concepts[4].level | 2 |
| concepts[4].score | 0.4748784899711609 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q1141429 |
| concepts[4].display_name | Flow cytometry |
| concepts[5].id | https://openalex.org/C186060115 |
| concepts[5].level | 1 |
| concepts[5].score | 0.45210736989974976 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q30336093 |
| concepts[5].display_name | Biological system |
| concepts[6].id | https://openalex.org/C183696295 |
| concepts[6].level | 1 |
| concepts[6].score | 0.36411112546920776 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q2487696 |
| concepts[6].display_name | Biochemical engineering |
| concepts[7].id | https://openalex.org/C70721500 |
| concepts[7].level | 1 |
| concepts[7].score | 0.32097384333610535 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q177005 |
| concepts[7].display_name | Computational biology |
| concepts[8].id | https://openalex.org/C121332964 |
| concepts[8].level | 0 |
| concepts[8].score | 0.3207930326461792 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q413 |
| concepts[8].display_name | Physics |
| concepts[9].id | https://openalex.org/C86803240 |
| concepts[9].level | 0 |
| concepts[9].score | 0.27702927589416504 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q420 |
| concepts[9].display_name | Biology |
| concepts[10].id | https://openalex.org/C18903297 |
| concepts[10].level | 1 |
| concepts[10].score | 0.1437821388244629 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q7150 |
| concepts[10].display_name | Ecology |
| concepts[11].id | https://openalex.org/C127413603 |
| concepts[11].level | 0 |
| concepts[11].score | 0.10821166634559631 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q11023 |
| concepts[11].display_name | Engineering |
| concepts[12].id | https://openalex.org/C76155785 |
| concepts[12].level | 1 |
| concepts[12].score | 0.09809410572052002 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q418 |
| concepts[12].display_name | Telecommunications |
| concepts[13].id | https://openalex.org/C54355233 |
| concepts[13].level | 1 |
| concepts[13].score | 0.0 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q7162 |
| concepts[13].display_name | Genetics |
| keywords[0].id | https://openalex.org/keywords/detector |
| keywords[0].score | 0.8845115900039673 |
| keywords[0].display_name | Detector |
| keywords[1].id | https://openalex.org/keywords/identification |
| keywords[1].score | 0.631077766418457 |
| keywords[1].display_name | Identification (biology) |
| keywords[2].id | https://openalex.org/keywords/cytometry |
| keywords[2].score | 0.5432693958282471 |
| keywords[2].display_name | Cytometry |
| keywords[3].id | https://openalex.org/keywords/computer-science |
| keywords[3].score | 0.5083622336387634 |
| keywords[3].display_name | Computer science |
| keywords[4].id | https://openalex.org/keywords/flow-cytometry |
| keywords[4].score | 0.4748784899711609 |
| keywords[4].display_name | Flow cytometry |
| keywords[5].id | https://openalex.org/keywords/biological-system |
| keywords[5].score | 0.45210736989974976 |
| keywords[5].display_name | Biological system |
| keywords[6].id | https://openalex.org/keywords/biochemical-engineering |
| keywords[6].score | 0.36411112546920776 |
| keywords[6].display_name | Biochemical engineering |
| keywords[7].id | https://openalex.org/keywords/computational-biology |
| keywords[7].score | 0.32097384333610535 |
| keywords[7].display_name | Computational biology |
| keywords[8].id | https://openalex.org/keywords/physics |
| keywords[8].score | 0.3207930326461792 |
| keywords[8].display_name | Physics |
| keywords[9].id | https://openalex.org/keywords/biology |
| keywords[9].score | 0.27702927589416504 |
| keywords[9].display_name | Biology |
| keywords[10].id | https://openalex.org/keywords/ecology |
| keywords[10].score | 0.1437821388244629 |
| keywords[10].display_name | Ecology |
| keywords[11].id | https://openalex.org/keywords/engineering |
| keywords[11].score | 0.10821166634559631 |
| keywords[11].display_name | Engineering |
| keywords[12].id | https://openalex.org/keywords/telecommunications |
| keywords[12].score | 0.09809410572052002 |
| keywords[12].display_name | Telecommunications |
| language | en |
| locations[0].id | doi:10.1002/cyto.a.23284 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S86468533 |
| locations[0].source.issn | 1552-4922, 1552-4930 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | False |
| locations[0].source.issn_l | 1552-4922 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | Cytometry Part A |
| locations[0].source.host_organization | https://openalex.org/P4310320595 |
| locations[0].source.host_organization_name | Wiley |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310320595 |
| locations[0].source.host_organization_lineage_names | Wiley |
| locations[0].license | |
| locations[0].pdf_url | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/cyto.a.23284 |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Cytometry Part A |
| locations[0].landing_page_url | https://doi.org/10.1002/cyto.a.23284 |
| locations[1].id | pmid:29165907 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306525036 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | PubMed |
| locations[1].source.host_organization | https://openalex.org/I1299303238 |
| locations[1].source.host_organization_name | National Institutes of Health |
| locations[1].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | publishedVersion |
| locations[1].raw_type | |
| locations[1].license_id | |
| locations[1].is_accepted | True |
| locations[1].is_published | True |
| locations[1].raw_source_name | Cytometry. Part A : the journal of the International Society for Analytical Cytology |
| locations[1].landing_page_url | https://pubmed.ncbi.nlm.nih.gov/29165907 |
| locations[2].id | pmh:oai:archive.ugent.be:8553284 |
| locations[2].is_oa | True |
| locations[2].source.id | https://openalex.org/S4306400477 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | False |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | Ghent University Academic Bibliography (Ghent University) |
| locations[2].source.host_organization | https://openalex.org/I32597200 |
| locations[2].source.host_organization_name | Ghent University |
| locations[2].source.host_organization_lineage | https://openalex.org/I32597200 |
| locations[2].license | other-oa |
| locations[2].pdf_url | |
| locations[2].version | publishedVersion |
| locations[2].raw_type | journalArticle |
| locations[2].license_id | https://openalex.org/licenses/other-oa |
| locations[2].is_accepted | True |
| locations[2].is_published | True |
| locations[2].raw_source_name | CYTOMETRY PART A |
| locations[2].landing_page_url | https://biblio.ugent.be/publication/8553284 |
| locations[3].id | pmh:oai:archive.ugent.be:8542854 |
| locations[3].is_oa | False |
| locations[3].source.id | https://openalex.org/S4306400477 |
| locations[3].source.issn | |
| locations[3].source.type | repository |
| locations[3].source.is_oa | False |
| locations[3].source.issn_l | |
| locations[3].source.is_core | False |
| locations[3].source.is_in_doaj | False |
| locations[3].source.display_name | Ghent University Academic Bibliography (Ghent University) |
| locations[3].source.host_organization | https://openalex.org/I32597200 |
| locations[3].source.host_organization_name | Ghent University |
| locations[3].source.host_organization_lineage | https://openalex.org/I32597200 |
| locations[3].license | |
| locations[3].pdf_url | |
| locations[3].version | submittedVersion |
| locations[3].raw_type | journalArticle |
| locations[3].license_id | |
| locations[3].is_accepted | False |
| locations[3].is_published | False |
| locations[3].raw_source_name | CYTOMETRY PART A |
| locations[3].landing_page_url | https://biblio.ugent.be/publication/8542854 |
| indexed_in | crossref, pubmed |
| authorships[0].author.id | https://openalex.org/A5016375501 |
| authorships[0].author.orcid | https://orcid.org/0000-0001-5595-4758 |
| authorships[0].author.display_name | Peter Rubbens |
| authorships[0].countries | BE |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I32597200 |
| authorships[0].affiliations[0].raw_affiliation_string | KERMIT, Department of Mathematical Modelling, Statistics and Bioinformatics, Ghent University, Ghent, Belgium |
| authorships[0].institutions[0].id | https://openalex.org/I32597200 |
| authorships[0].institutions[0].ror | https://ror.org/00cv9y106 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I32597200 |
| authorships[0].institutions[0].country_code | BE |
| authorships[0].institutions[0].display_name | Ghent University |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Peter Rubbens |
| authorships[0].is_corresponding | True |
| authorships[0].raw_affiliation_strings | KERMIT, Department of Mathematical Modelling, Statistics and Bioinformatics, Ghent University, Ghent, Belgium |
| authorships[1].author.id | https://openalex.org/A5021833980 |
| authorships[1].author.orcid | https://orcid.org/0000-0003-4996-2596 |
| authorships[1].author.display_name | Ruben Props |
| authorships[1].countries | BE |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I32597200 |
| authorships[1].affiliations[0].raw_affiliation_string | Center for Microbial Technology and Ecology (CMET), Ghent University, Ghent, Belgium |
| authorships[1].institutions[0].id | https://openalex.org/I32597200 |
| authorships[1].institutions[0].ror | https://ror.org/00cv9y106 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I32597200 |
| authorships[1].institutions[0].country_code | BE |
| authorships[1].institutions[0].display_name | Ghent University |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Ruben Props |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Center for Microbial Technology and Ecology (CMET), Ghent University, Ghent, Belgium |
| authorships[2].author.id | https://openalex.org/A5091440601 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-7052-1616 |
| authorships[2].author.display_name | Cristina García‐Timermans |
| authorships[2].countries | BE |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I32597200 |
| authorships[2].affiliations[0].raw_affiliation_string | Center for Microbial Technology and Ecology (CMET), Ghent University, Ghent, Belgium |
| authorships[2].institutions[0].id | https://openalex.org/I32597200 |
| authorships[2].institutions[0].ror | https://ror.org/00cv9y106 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I32597200 |
| authorships[2].institutions[0].country_code | BE |
| authorships[2].institutions[0].display_name | Ghent University |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Cristina Garcia‐Timermans |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Center for Microbial Technology and Ecology (CMET), Ghent University, Ghent, Belgium |
| authorships[3].author.id | https://openalex.org/A5047800622 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-7734-3103 |
| authorships[3].author.display_name | Nico Boon |
| authorships[3].countries | BE |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I32597200 |
| authorships[3].affiliations[0].raw_affiliation_string | Center for Microbial Technology and Ecology (CMET), Ghent University, Ghent, Belgium |
| authorships[3].institutions[0].id | https://openalex.org/I32597200 |
| authorships[3].institutions[0].ror | https://ror.org/00cv9y106 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I32597200 |
| authorships[3].institutions[0].country_code | BE |
| authorships[3].institutions[0].display_name | Ghent University |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Nico Boon |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Center for Microbial Technology and Ecology (CMET), Ghent University, Ghent, Belgium |
| authorships[4].author.id | https://openalex.org/A5028945060 |
| authorships[4].author.orcid | https://orcid.org/0000-0002-5950-3003 |
| authorships[4].author.display_name | Willem Waegeman |
| authorships[4].countries | BE |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I32597200 |
| authorships[4].affiliations[0].raw_affiliation_string | KERMIT, Department of Mathematical Modelling, Statistics and Bioinformatics, Ghent University, Ghent, Belgium |
| authorships[4].institutions[0].id | https://openalex.org/I32597200 |
| authorships[4].institutions[0].ror | https://ror.org/00cv9y106 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I32597200 |
| authorships[4].institutions[0].country_code | BE |
| authorships[4].institutions[0].display_name | Ghent University |
| authorships[4].author_position | last |
| authorships[4].raw_author_name | Willem Waegeman |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | KERMIT, Department of Mathematical Modelling, Statistics and Bioinformatics, Ghent University, Ghent, Belgium |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/cyto.a.23284 |
| open_access.oa_status | bronze |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Stripping flow cytometry: How many detectors do we need for bacterial identification? |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T11289 |
| primary_topic.field.id | https://openalex.org/fields/13 |
| primary_topic.field.display_name | Biochemistry, Genetics and Molecular Biology |
| primary_topic.score | 0.9925000071525574 |
| primary_topic.domain.id | https://openalex.org/domains/1 |
| primary_topic.domain.display_name | Life Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1312 |
| primary_topic.subfield.display_name | Molecular Biology |
| primary_topic.display_name | Single-cell and spatial transcriptomics |
| related_works | https://openalex.org/W2176701861, https://openalex.org/W3009159775, https://openalex.org/W4251194061, https://openalex.org/W2758463337, https://openalex.org/W1572687853, https://openalex.org/W2538538514, https://openalex.org/W1966652204, https://openalex.org/W3000152097, https://openalex.org/W2002900699, https://openalex.org/W4283393906 |
| cited_by_count | 22 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 2 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 3 |
| counts_by_year[2].year | 2023 |
| counts_by_year[2].cited_by_count | 2 |
| counts_by_year[3].year | 2022 |
| counts_by_year[3].cited_by_count | 1 |
| counts_by_year[4].year | 2021 |
| counts_by_year[4].cited_by_count | 5 |
| counts_by_year[5].year | 2020 |
| counts_by_year[5].cited_by_count | 1 |
| counts_by_year[6].year | 2019 |
| counts_by_year[6].cited_by_count | 5 |
| counts_by_year[7].year | 2018 |
| counts_by_year[7].cited_by_count | 3 |
| locations_count | 4 |
| best_oa_location.id | doi:10.1002/cyto.a.23284 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S86468533 |
| best_oa_location.source.issn | 1552-4922, 1552-4930 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | False |
| best_oa_location.source.issn_l | 1552-4922 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | Cytometry Part A |
| best_oa_location.source.host_organization | https://openalex.org/P4310320595 |
| best_oa_location.source.host_organization_name | Wiley |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310320595 |
| best_oa_location.source.host_organization_lineage_names | Wiley |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/cyto.a.23284 |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Cytometry Part A |
| best_oa_location.landing_page_url | https://doi.org/10.1002/cyto.a.23284 |
| primary_location.id | doi:10.1002/cyto.a.23284 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S86468533 |
| primary_location.source.issn | 1552-4922, 1552-4930 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | False |
| primary_location.source.issn_l | 1552-4922 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | Cytometry Part A |
| primary_location.source.host_organization | https://openalex.org/P4310320595 |
| primary_location.source.host_organization_name | Wiley |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310320595 |
| primary_location.source.host_organization_lineage_names | Wiley |
| primary_location.license | |
| primary_location.pdf_url | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/cyto.a.23284 |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Cytometry Part A |
| primary_location.landing_page_url | https://doi.org/10.1002/cyto.a.23284 |
| publication_date | 2017-11-22 |
| publication_year | 2017 |
| referenced_works | https://openalex.org/W4229846132, https://openalex.org/W2080516713, https://openalex.org/W2013573429, https://openalex.org/W2053016491, https://openalex.org/W1967893574, https://openalex.org/W1592400292, https://openalex.org/W2295190630, https://openalex.org/W2582169429, https://openalex.org/W2027761702, https://openalex.org/W2029208819, https://openalex.org/W2527152597, https://openalex.org/W2021040160, https://openalex.org/W2143489734, https://openalex.org/W2731087015, https://openalex.org/W1767380958, https://openalex.org/W1951089650, https://openalex.org/W1971259347, https://openalex.org/W2055686479, https://openalex.org/W2142719894, https://openalex.org/W2114783837, https://openalex.org/W2018086140, https://openalex.org/W2321361127, https://openalex.org/W2911964244, https://openalex.org/W2998768810, https://openalex.org/W1985372952, https://openalex.org/W6675354045, https://openalex.org/W2787894218, https://openalex.org/W2119479037, https://openalex.org/W1986598950, https://openalex.org/W2075823564, https://openalex.org/W2001547153, https://openalex.org/W2461073387, https://openalex.org/W2049576207, https://openalex.org/W2088150079, https://openalex.org/W2167844952, https://openalex.org/W2141361677, https://openalex.org/W2106525823, https://openalex.org/W4285719527, https://openalex.org/W2101234009 |
| referenced_works_count | 39 |
| abstract_inverted_index.A | 107 |
| abstract_inverted_index.I | 172 |
| abstract_inverted_index.a | 68, 88, 143, 192 |
| abstract_inverted_index.As | 177 |
| abstract_inverted_index.In | 55, 160 |
| abstract_inverted_index.We | 66 |
| abstract_inverted_index.as | 9 |
| abstract_inverted_index.be | 100 |
| abstract_inverted_index.in | 114, 173 |
| abstract_inverted_index.is | 45, 53, 184, 206 |
| abstract_inverted_index.of | 26, 50, 62, 78, 104, 109, 124, 134, 146, 169, 180, 191, 195, 204, 213, 222 |
| abstract_inverted_index.on | 151 |
| abstract_inverted_index.or | 96 |
| abstract_inverted_index.to | 35, 41, 73, 120, 165 |
| abstract_inverted_index.we | 58, 92, 162 |
| abstract_inverted_index.© | 216 |
| abstract_inverted_index.The | 140 |
| abstract_inverted_index.are | 3, 12, 112 |
| abstract_inverted_index.but | 208 |
| abstract_inverted_index.can | 99 |
| abstract_inverted_index.due | 34 |
| abstract_inverted_index.for | 5, 15, 47, 198, 200, 220 |
| abstract_inverted_index.one | 95 |
| abstract_inverted_index.red | 175 |
| abstract_inverted_index.the | 39, 48, 60, 75, 115, 122, 152, 156, 174, 178, 189, 202, 211 |
| abstract_inverted_index.two | 132 |
| abstract_inverted_index.yet | 38 |
| abstract_inverted_index.2017 | 217 |
| abstract_inverted_index.SYBR | 170 |
| abstract_inverted_index.Some | 25 |
| abstract_inverted_index.able | 164 |
| abstract_inverted_index.data | 128, 157 |
| abstract_inverted_index.flow | 7, 10, 182 |
| abstract_inverted_index.from | 131, 154 |
| abstract_inverted_index.help | 119 |
| abstract_inverted_index.kind | 194 |
| abstract_inverted_index.loss | 103 |
| abstract_inverted_index.more | 21, 97 |
| abstract_inverted_index.show | 93 |
| abstract_inverted_index.than | 23 |
| abstract_inverted_index.that | 80, 94 |
| abstract_inverted_index.this | 43, 56 |
| abstract_inverted_index.were | 129, 158, 163 |
| abstract_inverted_index.will | 81 |
| abstract_inverted_index.with | 137 |
| abstract_inverted_index.Green | 171 |
| abstract_inverted_index.Using | 87 |
| abstract_inverted_index.clear | 144 |
| abstract_inverted_index.field | 179 |
| abstract_inverted_index.final | 116 |
| abstract_inverted_index.paper | 57 |
| abstract_inverted_index.these | 27, 63, 186 |
| abstract_inverted_index.types | 133 |
| abstract_inverted_index.which | 42, 118, 149, 155, 201 |
| abstract_inverted_index.extent | 40 |
| abstract_inverted_index.mainly | 13 |
| abstract_inverted_index.method | 72, 141 |
| abstract_inverted_index.modern | 18, 135 |
| abstract_inverted_index.number | 108, 203 |
| abstract_inverted_index.power. | 106 |
| abstract_inverted_index.select | 74 |
| abstract_inverted_index.subset | 77 |
| abstract_inverted_index.toward | 210 |
| abstract_inverted_index.Society | 219 |
| abstract_inverted_index.between | 84 |
| abstract_inverted_index.contain | 20 |
| abstract_inverted_index.depends | 150 |
| abstract_inverted_index.improve | 121 |
| abstract_inverted_index.measure | 31 |
| abstract_inverted_index.needed. | 24 |
| abstract_inverted_index.propose | 67 |
| abstract_inverted_index.removed | 101 |
| abstract_inverted_index.results | 187 |
| abstract_inverted_index.reveals | 142 |
| abstract_inverted_index.subset, | 117 |
| abstract_inverted_index.without | 102 |
| abstract_inverted_index.Abstract | 0 |
| abstract_inverted_index.behavior | 168 |
| abstract_inverted_index.detector | 70, 89, 147 |
| abstract_inverted_index.included | 113 |
| abstract_inverted_index.motivate | 188 |
| abstract_inverted_index.ordering | 145 |
| abstract_inverted_index.overlap, | 37 |
| abstract_inverted_index.pinpoint | 166 |
| abstract_inverted_index.reduced, | 207 |
| abstract_inverted_index.relevant | 46 |
| abstract_inverted_index.smallest | 76 |
| abstract_inverted_index.spectral | 36 |
| abstract_inverted_index.tailored | 209 |
| abstract_inverted_index.Cytometry | 223 |
| abstract_inverted_index.addition, | 161 |
| abstract_inverted_index.bacterial | 51, 85, 125 |
| abstract_inverted_index.cytometry | 183 |
| abstract_inverted_index.detectors | 22, 30, 79, 98, 111, 205 |
| abstract_inverted_index.developed | 14 |
| abstract_inverted_index.different | 138, 193 |
| abstract_inverted_index.maturing, | 185 |
| abstract_inverted_index.microbial | 6, 181, 214 |
| abstract_inverted_index.optimally | 82 |
| abstract_inverted_index.resolving | 105 |
| abstract_inverted_index.retrieved | 130 |
| abstract_inverted_index.selection | 71 |
| abstract_inverted_index.spectrum. | 176 |
| abstract_inverted_index.strategy, | 91 |
| abstract_inverted_index.Multicolor | 1 |
| abstract_inverted_index.additional | 28, 64, 110 |
| abstract_inverted_index.ambiguous. | 54 |
| abstract_inverted_index.approaches | 2 |
| abstract_inverted_index.biological | 32 |
| abstract_inverted_index.biomedical | 16 |
| abstract_inverted_index.cytometers | 11, 136 |
| abstract_inverted_index.cytometric | 196 |
| abstract_inverted_index.cytometry; | 8 |
| abstract_inverted_index.detectors. | 65 |
| abstract_inverted_index.instrument | 153 |
| abstract_inverted_index.retrieved. | 159 |
| abstract_inverted_index.unexpected | 167 |
| abstract_inverted_index.usefulness | 61 |
| abstract_inverted_index.Advancement | 221 |
| abstract_inverted_index.challenging | 4 |
| abstract_inverted_index.elimination | 90 |
| abstract_inverted_index.information | 33, 44 |
| abstract_inverted_index.instruments | 19, 197 |
| abstract_inverted_index.populations | 52 |
| abstract_inverted_index.Experimental | 127 |
| abstract_inverted_index.characterize | 59 |
| abstract_inverted_index.construction | 190 |
| abstract_inverted_index.discriminate | 83 |
| abstract_inverted_index.experiments. | 215 |
| abstract_inverted_index.fluorescence | 29 |
| abstract_inverted_index.importances, | 148 |
| abstract_inverted_index.populations. | 86, 126 |
| abstract_inverted_index.International | 218 |
| abstract_inverted_index.applications, | 17 |
| abstract_inverted_index.data‐driven | 69 |
| abstract_inverted_index.identification | 49, 123 |
| abstract_inverted_index.characteristics | 212 |
| abstract_inverted_index.configurations. | 139 |
| abstract_inverted_index.microbiologists, | 199 |
| cited_by_percentile_year.max | 98 |
| cited_by_percentile_year.min | 89 |
| corresponding_author_ids | https://openalex.org/A5016375501 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 5 |
| corresponding_institution_ids | https://openalex.org/I32597200 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/10 |
| sustainable_development_goals[0].score | 0.6899999976158142 |
| sustainable_development_goals[0].display_name | Reduced inequalities |
| citation_normalized_percentile.value | 0.75334872 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |