StrokeGAN+: Few-Shot Semi-Supervised Chinese Font Generation with Stroke Encoding Article Swipe
YOU?
·
· 2022
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2211.06198
The generation of Chinese fonts has a wide range of applications. The currently predominated methods are mainly based on deep generative models, especially the generative adversarial networks (GANs). However, existing GAN-based models usually suffer from the well-known mode collapse problem. When mode collapse happens, the kind of GAN-based models will be failure to yield the correct fonts. To address this issue, we introduce a one-bit stroke encoding and a few-shot semi-supervised scheme (i.e., using a few paired data as semi-supervised information) to explore the local and global structure information of Chinese characters respectively, motivated by the intuition that strokes and characters directly embody certain local and global modes of Chinese characters. Based on these ideas, this paper proposes an effective model called \textit{StrokeGAN+}, which incorporates the stroke encoding and the few-shot semi-supervised scheme into the CycleGAN model. The effectiveness of the proposed model is demonstrated by amounts of experiments. Experimental results show that the mode collapse issue can be effectively alleviated by the introduced one-bit stroke encoding and few-shot semi-supervised training scheme, and that the proposed model outperforms the state-of-the-art models in fourteen font generation tasks in terms of four important evaluation metrics and the quality of generated characters. Besides CycleGAN, we also show that the proposed idea can be adapted to other existing models to improve their performance. The effectiveness of the proposed model for the zero-shot traditional Chinese font generation is also evaluated in this paper.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2211.06198
- https://arxiv.org/pdf/2211.06198
- OA Status
- green
- Cited By
- 3
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4309046897
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4309046897Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2211.06198Digital Object Identifier
- Title
-
StrokeGAN+: Few-Shot Semi-Supervised Chinese Font Generation with Stroke EncodingWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2022Year of publication
- Publication date
-
2022-11-11Full publication date if available
- Authors
-
Jinshan Zeng, Yefei Wang, Qi Chen, Yunxin Liu, Mingwen Wang, Yuan YaoList of authors in order
- Landing page
-
https://arxiv.org/abs/2211.06198Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2211.06198Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2211.06198Direct OA link when available
- Concepts
-
Computer science, Encoding (memory), Artificial intelligence, Generative grammar, Deep learning, Mode (computer interface), Pattern recognition (psychology), Machine learning, Operating systemTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
3Total citation count in OpenAlex
- Citations by year (recent)
-
2024: 2, 2023: 1Per-year citation counts (last 5 years)
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4309046897 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2211.06198 |
| ids.doi | https://doi.org/10.48550/arxiv.2211.06198 |
| ids.openalex | https://openalex.org/W4309046897 |
| fwci | |
| type | preprint |
| title | StrokeGAN+: Few-Shot Semi-Supervised Chinese Font Generation with Stroke Encoding |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10775 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9902999997138977 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1707 |
| topics[0].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[0].display_name | Generative Adversarial Networks and Image Synthesis |
| topics[1].id | https://openalex.org/T10601 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9794999957084656 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1707 |
| topics[1].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[1].display_name | Handwritten Text Recognition Techniques |
| topics[2].id | https://openalex.org/T12290 |
| topics[2].field.id | https://openalex.org/fields/22 |
| topics[2].field.display_name | Engineering |
| topics[2].score | 0.9785000085830688 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2207 |
| topics[2].subfield.display_name | Control and Systems Engineering |
| topics[2].display_name | Human Motion and Animation |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C41008148 |
| concepts[0].level | 0 |
| concepts[0].score | 0.7848995923995972 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[0].display_name | Computer science |
| concepts[1].id | https://openalex.org/C125411270 |
| concepts[1].level | 2 |
| concepts[1].score | 0.6195933222770691 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q18653 |
| concepts[1].display_name | Encoding (memory) |
| concepts[2].id | https://openalex.org/C154945302 |
| concepts[2].level | 1 |
| concepts[2].score | 0.5924319624900818 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[2].display_name | Artificial intelligence |
| concepts[3].id | https://openalex.org/C39890363 |
| concepts[3].level | 2 |
| concepts[3].score | 0.5622339844703674 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q36108 |
| concepts[3].display_name | Generative grammar |
| concepts[4].id | https://openalex.org/C108583219 |
| concepts[4].level | 2 |
| concepts[4].score | 0.447139173746109 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q197536 |
| concepts[4].display_name | Deep learning |
| concepts[5].id | https://openalex.org/C48677424 |
| concepts[5].level | 2 |
| concepts[5].score | 0.4175716042518616 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q6888088 |
| concepts[5].display_name | Mode (computer interface) |
| concepts[6].id | https://openalex.org/C153180895 |
| concepts[6].level | 2 |
| concepts[6].score | 0.3684316873550415 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[6].display_name | Pattern recognition (psychology) |
| concepts[7].id | https://openalex.org/C119857082 |
| concepts[7].level | 1 |
| concepts[7].score | 0.3625975251197815 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[7].display_name | Machine learning |
| concepts[8].id | https://openalex.org/C111919701 |
| concepts[8].level | 1 |
| concepts[8].score | 0.0 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q9135 |
| concepts[8].display_name | Operating system |
| keywords[0].id | https://openalex.org/keywords/computer-science |
| keywords[0].score | 0.7848995923995972 |
| keywords[0].display_name | Computer science |
| keywords[1].id | https://openalex.org/keywords/encoding |
| keywords[1].score | 0.6195933222770691 |
| keywords[1].display_name | Encoding (memory) |
| keywords[2].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[2].score | 0.5924319624900818 |
| keywords[2].display_name | Artificial intelligence |
| keywords[3].id | https://openalex.org/keywords/generative-grammar |
| keywords[3].score | 0.5622339844703674 |
| keywords[3].display_name | Generative grammar |
| keywords[4].id | https://openalex.org/keywords/deep-learning |
| keywords[4].score | 0.447139173746109 |
| keywords[4].display_name | Deep learning |
| keywords[5].id | https://openalex.org/keywords/mode |
| keywords[5].score | 0.4175716042518616 |
| keywords[5].display_name | Mode (computer interface) |
| keywords[6].id | https://openalex.org/keywords/pattern-recognition |
| keywords[6].score | 0.3684316873550415 |
| keywords[6].display_name | Pattern recognition (psychology) |
| keywords[7].id | https://openalex.org/keywords/machine-learning |
| keywords[7].score | 0.3625975251197815 |
| keywords[7].display_name | Machine learning |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2211.06198 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2211.06198 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2211.06198 |
| locations[1].id | doi:10.48550/arxiv.2211.06198 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2211.06198 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5100440528 |
| authorships[0].author.orcid | https://orcid.org/0000-0003-1719-3358 |
| authorships[0].author.display_name | Jinshan Zeng |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Zeng, Jinshan |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5101893513 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-7228-7712 |
| authorships[1].author.display_name | Yefei Wang |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Wang, Yefei |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5100340139 |
| authorships[2].author.orcid | https://orcid.org/0000-0001-8732-8049 |
| authorships[2].author.display_name | Qi Chen |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Chen, Qi |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5102880548 |
| authorships[3].author.orcid | https://orcid.org/0000-0001-7352-8955 |
| authorships[3].author.display_name | Yunxin Liu |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Liu, Yunxin |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5033849258 |
| authorships[4].author.orcid | https://orcid.org/0000-0002-8118-9612 |
| authorships[4].author.display_name | Mingwen Wang |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Wang, Mingwen |
| authorships[4].is_corresponding | False |
| authorships[5].author.id | https://openalex.org/A5100337338 |
| authorships[5].author.orcid | https://orcid.org/0000-0002-2705-6245 |
| authorships[5].author.display_name | Yuan Yao |
| authorships[5].author_position | last |
| authorships[5].raw_author_name | Yao, Yuan |
| authorships[5].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2211.06198 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2022-11-21T00:00:00 |
| display_name | StrokeGAN+: Few-Shot Semi-Supervised Chinese Font Generation with Stroke Encoding |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T10775 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9902999997138977 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1707 |
| primary_topic.subfield.display_name | Computer Vision and Pattern Recognition |
| primary_topic.display_name | Generative Adversarial Networks and Image Synthesis |
| related_works | https://openalex.org/W2380075625, https://openalex.org/W4375867731, https://openalex.org/W4390718435, https://openalex.org/W4390549206, https://openalex.org/W2611989081, https://openalex.org/W3137171911, https://openalex.org/W4379540039, https://openalex.org/W4237784285, https://openalex.org/W323006901, https://openalex.org/W4380075502 |
| cited_by_count | 3 |
| counts_by_year[0].year | 2024 |
| counts_by_year[0].cited_by_count | 2 |
| counts_by_year[1].year | 2023 |
| counts_by_year[1].cited_by_count | 1 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2211.06198 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2211.06198 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2211.06198 |
| primary_location.id | pmh:oai:arXiv.org:2211.06198 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2211.06198 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2211.06198 |
| publication_date | 2022-11-11 |
| publication_year | 2022 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 6, 63, 68, 74 |
| abstract_inverted_index.To | 57 |
| abstract_inverted_index.an | 118 |
| abstract_inverted_index.as | 78 |
| abstract_inverted_index.be | 50, 158, 209 |
| abstract_inverted_index.by | 94, 145, 161 |
| abstract_inverted_index.in | 181, 186, 235 |
| abstract_inverted_index.is | 143, 232 |
| abstract_inverted_index.of | 2, 9, 46, 89, 108, 139, 147, 188, 196, 221 |
| abstract_inverted_index.on | 18, 112 |
| abstract_inverted_index.to | 52, 81, 211, 215 |
| abstract_inverted_index.we | 61, 201 |
| abstract_inverted_index.The | 0, 11, 137, 219 |
| abstract_inverted_index.and | 67, 85, 99, 105, 128, 167, 172, 193 |
| abstract_inverted_index.are | 15 |
| abstract_inverted_index.can | 157, 208 |
| abstract_inverted_index.few | 75 |
| abstract_inverted_index.for | 225 |
| abstract_inverted_index.has | 5 |
| abstract_inverted_index.the | 23, 35, 44, 54, 83, 95, 125, 129, 134, 140, 153, 162, 174, 178, 194, 205, 222, 226 |
| abstract_inverted_index.When | 40 |
| abstract_inverted_index.also | 202, 233 |
| abstract_inverted_index.data | 77 |
| abstract_inverted_index.deep | 19 |
| abstract_inverted_index.font | 183, 230 |
| abstract_inverted_index.four | 189 |
| abstract_inverted_index.from | 34 |
| abstract_inverted_index.idea | 207 |
| abstract_inverted_index.into | 133 |
| abstract_inverted_index.kind | 45 |
| abstract_inverted_index.mode | 37, 41, 154 |
| abstract_inverted_index.show | 151, 203 |
| abstract_inverted_index.that | 97, 152, 173, 204 |
| abstract_inverted_index.this | 59, 115, 236 |
| abstract_inverted_index.wide | 7 |
| abstract_inverted_index.will | 49 |
| abstract_inverted_index.Based | 111 |
| abstract_inverted_index.based | 17 |
| abstract_inverted_index.fonts | 4 |
| abstract_inverted_index.issue | 156 |
| abstract_inverted_index.local | 84, 104 |
| abstract_inverted_index.model | 120, 142, 176, 224 |
| abstract_inverted_index.modes | 107 |
| abstract_inverted_index.other | 212 |
| abstract_inverted_index.paper | 116 |
| abstract_inverted_index.range | 8 |
| abstract_inverted_index.tasks | 185 |
| abstract_inverted_index.terms | 187 |
| abstract_inverted_index.their | 217 |
| abstract_inverted_index.these | 113 |
| abstract_inverted_index.using | 73 |
| abstract_inverted_index.which | 123 |
| abstract_inverted_index.yield | 53 |
| abstract_inverted_index.(i.e., | 72 |
| abstract_inverted_index.called | 121 |
| abstract_inverted_index.embody | 102 |
| abstract_inverted_index.fonts. | 56 |
| abstract_inverted_index.global | 86, 106 |
| abstract_inverted_index.ideas, | 114 |
| abstract_inverted_index.issue, | 60 |
| abstract_inverted_index.mainly | 16 |
| abstract_inverted_index.model. | 136 |
| abstract_inverted_index.models | 31, 48, 180, 214 |
| abstract_inverted_index.paired | 76 |
| abstract_inverted_index.paper. | 237 |
| abstract_inverted_index.scheme | 71, 132 |
| abstract_inverted_index.stroke | 65, 126, 165 |
| abstract_inverted_index.suffer | 33 |
| abstract_inverted_index.(GANs). | 27 |
| abstract_inverted_index.Besides | 199 |
| abstract_inverted_index.Chinese | 3, 90, 109, 229 |
| abstract_inverted_index.adapted | 210 |
| abstract_inverted_index.address | 58 |
| abstract_inverted_index.amounts | 146 |
| abstract_inverted_index.certain | 103 |
| abstract_inverted_index.correct | 55 |
| abstract_inverted_index.explore | 82 |
| abstract_inverted_index.failure | 51 |
| abstract_inverted_index.improve | 216 |
| abstract_inverted_index.methods | 14 |
| abstract_inverted_index.metrics | 192 |
| abstract_inverted_index.models, | 21 |
| abstract_inverted_index.one-bit | 64, 164 |
| abstract_inverted_index.quality | 195 |
| abstract_inverted_index.results | 150 |
| abstract_inverted_index.scheme, | 171 |
| abstract_inverted_index.strokes | 98 |
| abstract_inverted_index.usually | 32 |
| abstract_inverted_index.CycleGAN | 135 |
| abstract_inverted_index.However, | 28 |
| abstract_inverted_index.collapse | 38, 42, 155 |
| abstract_inverted_index.directly | 101 |
| abstract_inverted_index.encoding | 66, 127, 166 |
| abstract_inverted_index.existing | 29, 213 |
| abstract_inverted_index.few-shot | 69, 130, 168 |
| abstract_inverted_index.fourteen | 182 |
| abstract_inverted_index.happens, | 43 |
| abstract_inverted_index.networks | 26 |
| abstract_inverted_index.problem. | 39 |
| abstract_inverted_index.proposed | 141, 175, 206, 223 |
| abstract_inverted_index.proposes | 117 |
| abstract_inverted_index.training | 170 |
| abstract_inverted_index.CycleGAN, | 200 |
| abstract_inverted_index.GAN-based | 30, 47 |
| abstract_inverted_index.currently | 12 |
| abstract_inverted_index.effective | 119 |
| abstract_inverted_index.evaluated | 234 |
| abstract_inverted_index.generated | 197 |
| abstract_inverted_index.important | 190 |
| abstract_inverted_index.introduce | 62 |
| abstract_inverted_index.intuition | 96 |
| abstract_inverted_index.motivated | 93 |
| abstract_inverted_index.structure | 87 |
| abstract_inverted_index.zero-shot | 227 |
| abstract_inverted_index.alleviated | 160 |
| abstract_inverted_index.characters | 91, 100 |
| abstract_inverted_index.especially | 22 |
| abstract_inverted_index.evaluation | 191 |
| abstract_inverted_index.generation | 1, 184, 231 |
| abstract_inverted_index.generative | 20, 24 |
| abstract_inverted_index.introduced | 163 |
| abstract_inverted_index.well-known | 36 |
| abstract_inverted_index.adversarial | 25 |
| abstract_inverted_index.characters. | 110, 198 |
| abstract_inverted_index.effectively | 159 |
| abstract_inverted_index.information | 88 |
| abstract_inverted_index.outperforms | 177 |
| abstract_inverted_index.traditional | 228 |
| abstract_inverted_index.Experimental | 149 |
| abstract_inverted_index.demonstrated | 144 |
| abstract_inverted_index.experiments. | 148 |
| abstract_inverted_index.incorporates | 124 |
| abstract_inverted_index.information) | 80 |
| abstract_inverted_index.performance. | 218 |
| abstract_inverted_index.predominated | 13 |
| abstract_inverted_index.applications. | 10 |
| abstract_inverted_index.effectiveness | 138, 220 |
| abstract_inverted_index.respectively, | 92 |
| abstract_inverted_index.semi-supervised | 70, 79, 131, 169 |
| abstract_inverted_index.state-of-the-art | 179 |
| abstract_inverted_index.\textit{StrokeGAN+}, | 122 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 6 |
| citation_normalized_percentile |