Strong convergence with error estimates for a stochastic compartmental model of electrophysiology Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2502.02518
This paper presents a rigorous mathematical analysis, alongside simulation studies, of a spatially extended stochastic electrophysiology model, the Hodgkin-Huxley model of the squid giant axon being a classical example. Although most studies in electrophysiology do not account for stochasticity, it is well known that ion channels regulating membrane voltage open and close randomly due to thermal fluctuations. We introduce a spatially extended compartmental model in which this stochastic behavior is captured through a piecewise-deterministic Markov process (PDMP). Space is discretized into n compartments each of which has at most one ion channel. We also devise a numerical method to simulate this stochastic model and illustrate the numerical method by simulation studies. We show that a classical system of partial differential equations (PDEs) approximates the stochastic system as $n \to \infty$. Unlike existing results, which focus on weak convergence or convergence in probability, we establish an almost sure convergence result with a precise error bound of order $n^{1/3}$. Our findings broaden the current understanding of stochastic effects in spatially structured neuronal models and have potential applications in studying random ion channel configurations in neurobiology. Additionally, our proof leverages ideas from homogenization theory in PDEs and can potentially be applied to other PDMPs or accommodate other ion channel distributions with random spacing or defects.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2502.02518
- https://arxiv.org/pdf/2502.02518
- OA Status
- green
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4407186866
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4407186866Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2502.02518Digital Object Identifier
- Title
-
Strong convergence with error estimates for a stochastic compartmental model of electrophysiologyWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-02-04Full publication date if available
- Authors
-
Wai-Tong Louis Fan, Joshua A. McGinnis, Yoichiro MoriList of authors in order
- Landing page
-
https://arxiv.org/abs/2502.02518Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2502.02518Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2502.02518Direct OA link when available
- Concepts
-
Convergence (economics), Electrophysiology, Computer science, Neuroscience, Economics, Biology, MacroeconomicsTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4407186866 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2502.02518 |
| ids.doi | https://doi.org/10.48550/arxiv.2502.02518 |
| ids.openalex | https://openalex.org/W4407186866 |
| fwci | |
| type | preprint |
| title | Strong convergence with error estimates for a stochastic compartmental model of electrophysiology |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10363 |
| topics[0].field.id | https://openalex.org/fields/22 |
| topics[0].field.display_name | Engineering |
| topics[0].score | 0.8260999917984009 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2208 |
| topics[0].subfield.display_name | Electrical and Electronic Engineering |
| topics[0].display_name | Low-power high-performance VLSI design |
| topics[1].id | https://openalex.org/T10928 |
| topics[1].field.id | https://openalex.org/fields/18 |
| topics[1].field.display_name | Decision Sciences |
| topics[1].score | 0.8008000254631042 |
| topics[1].domain.id | https://openalex.org/domains/2 |
| topics[1].domain.display_name | Social Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1804 |
| topics[1].subfield.display_name | Statistics, Probability and Uncertainty |
| topics[1].display_name | Probabilistic and Robust Engineering Design |
| topics[2].id | https://openalex.org/T10067 |
| topics[2].field.id | https://openalex.org/fields/20 |
| topics[2].field.display_name | Economics, Econometrics and Finance |
| topics[2].score | 0.6955999732017517 |
| topics[2].domain.id | https://openalex.org/domains/2 |
| topics[2].domain.display_name | Social Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2003 |
| topics[2].subfield.display_name | Finance |
| topics[2].display_name | Stochastic processes and financial applications |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C2777303404 |
| concepts[0].level | 2 |
| concepts[0].score | 0.6551337242126465 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q759757 |
| concepts[0].display_name | Convergence (economics) |
| concepts[1].id | https://openalex.org/C185263204 |
| concepts[1].level | 2 |
| concepts[1].score | 0.5734689235687256 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q1154774 |
| concepts[1].display_name | Electrophysiology |
| concepts[2].id | https://openalex.org/C41008148 |
| concepts[2].level | 0 |
| concepts[2].score | 0.34673482179641724 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[2].display_name | Computer science |
| concepts[3].id | https://openalex.org/C169760540 |
| concepts[3].level | 1 |
| concepts[3].score | 0.17625516653060913 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q207011 |
| concepts[3].display_name | Neuroscience |
| concepts[4].id | https://openalex.org/C162324750 |
| concepts[4].level | 0 |
| concepts[4].score | 0.16428694128990173 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q8134 |
| concepts[4].display_name | Economics |
| concepts[5].id | https://openalex.org/C86803240 |
| concepts[5].level | 0 |
| concepts[5].score | 0.1337621808052063 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q420 |
| concepts[5].display_name | Biology |
| concepts[6].id | https://openalex.org/C139719470 |
| concepts[6].level | 1 |
| concepts[6].score | 0.061837583780288696 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q39680 |
| concepts[6].display_name | Macroeconomics |
| keywords[0].id | https://openalex.org/keywords/convergence |
| keywords[0].score | 0.6551337242126465 |
| keywords[0].display_name | Convergence (economics) |
| keywords[1].id | https://openalex.org/keywords/electrophysiology |
| keywords[1].score | 0.5734689235687256 |
| keywords[1].display_name | Electrophysiology |
| keywords[2].id | https://openalex.org/keywords/computer-science |
| keywords[2].score | 0.34673482179641724 |
| keywords[2].display_name | Computer science |
| keywords[3].id | https://openalex.org/keywords/neuroscience |
| keywords[3].score | 0.17625516653060913 |
| keywords[3].display_name | Neuroscience |
| keywords[4].id | https://openalex.org/keywords/economics |
| keywords[4].score | 0.16428694128990173 |
| keywords[4].display_name | Economics |
| keywords[5].id | https://openalex.org/keywords/biology |
| keywords[5].score | 0.1337621808052063 |
| keywords[5].display_name | Biology |
| keywords[6].id | https://openalex.org/keywords/macroeconomics |
| keywords[6].score | 0.061837583780288696 |
| keywords[6].display_name | Macroeconomics |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2502.02518 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2502.02518 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2502.02518 |
| locations[1].id | doi:10.48550/arxiv.2502.02518 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | cc-by |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | https://openalex.org/licenses/cc-by |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2502.02518 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5013511350 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-4572-6265 |
| authorships[0].author.display_name | Wai-Tong Louis Fan |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Fan, Wai-Tong Louis |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5116167671 |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | Joshua A. McGinnis |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | McGinnis, Joshua A. |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5057292858 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-4851-5148 |
| authorships[2].author.display_name | Yoichiro Mori |
| authorships[2].author_position | last |
| authorships[2].raw_author_name | Mori, Yoichiro |
| authorships[2].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2502.02518 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Strong convergence with error estimates for a stochastic compartmental model of electrophysiology |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T10363 |
| primary_topic.field.id | https://openalex.org/fields/22 |
| primary_topic.field.display_name | Engineering |
| primary_topic.score | 0.8260999917984009 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2208 |
| primary_topic.subfield.display_name | Electrical and Electronic Engineering |
| primary_topic.display_name | Low-power high-performance VLSI design |
| related_works | https://openalex.org/W4391375266, https://openalex.org/W2899084033, https://openalex.org/W2748952813, https://openalex.org/W2390279801, https://openalex.org/W4391913857, https://openalex.org/W2358668433, https://openalex.org/W4396701345, https://openalex.org/W2376932109, https://openalex.org/W2001405890, https://openalex.org/W4396696052 |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2502.02518 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2502.02518 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2502.02518 |
| primary_location.id | pmh:oai:arXiv.org:2502.02518 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2502.02518 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2502.02518 |
| publication_date | 2025-02-04 |
| publication_year | 2025 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 3, 11, 26, 59, 72, 95, 114, 150 |
| abstract_inverted_index.n | 81 |
| abstract_inverted_index.$n | 127 |
| abstract_inverted_index.We | 57, 92, 111 |
| abstract_inverted_index.an | 144 |
| abstract_inverted_index.as | 126 |
| abstract_inverted_index.at | 87 |
| abstract_inverted_index.be | 196 |
| abstract_inverted_index.by | 108 |
| abstract_inverted_index.do | 34 |
| abstract_inverted_index.in | 32, 64, 140, 166, 175, 181, 191 |
| abstract_inverted_index.is | 40, 69, 78 |
| abstract_inverted_index.it | 39 |
| abstract_inverted_index.of | 10, 20, 84, 117, 154, 163 |
| abstract_inverted_index.on | 135 |
| abstract_inverted_index.or | 138, 201, 210 |
| abstract_inverted_index.to | 54, 98, 198 |
| abstract_inverted_index.we | 142 |
| abstract_inverted_index.Our | 157 |
| abstract_inverted_index.\to | 128 |
| abstract_inverted_index.and | 50, 103, 171, 193 |
| abstract_inverted_index.can | 194 |
| abstract_inverted_index.due | 53 |
| abstract_inverted_index.for | 37 |
| abstract_inverted_index.has | 86 |
| abstract_inverted_index.ion | 44, 90, 178, 204 |
| abstract_inverted_index.not | 35 |
| abstract_inverted_index.one | 89 |
| abstract_inverted_index.our | 184 |
| abstract_inverted_index.the | 17, 21, 105, 123, 160 |
| abstract_inverted_index.PDEs | 192 |
| abstract_inverted_index.This | 0 |
| abstract_inverted_index.also | 93 |
| abstract_inverted_index.axon | 24 |
| abstract_inverted_index.each | 83 |
| abstract_inverted_index.from | 188 |
| abstract_inverted_index.have | 172 |
| abstract_inverted_index.into | 80 |
| abstract_inverted_index.most | 30, 88 |
| abstract_inverted_index.open | 49 |
| abstract_inverted_index.show | 112 |
| abstract_inverted_index.sure | 146 |
| abstract_inverted_index.that | 43, 113 |
| abstract_inverted_index.this | 66, 100 |
| abstract_inverted_index.weak | 136 |
| abstract_inverted_index.well | 41 |
| abstract_inverted_index.with | 149, 207 |
| abstract_inverted_index.PDMPs | 200 |
| abstract_inverted_index.Space | 77 |
| abstract_inverted_index.being | 25 |
| abstract_inverted_index.bound | 153 |
| abstract_inverted_index.close | 51 |
| abstract_inverted_index.error | 152 |
| abstract_inverted_index.focus | 134 |
| abstract_inverted_index.giant | 23 |
| abstract_inverted_index.ideas | 187 |
| abstract_inverted_index.known | 42 |
| abstract_inverted_index.model | 19, 63, 102 |
| abstract_inverted_index.order | 155 |
| abstract_inverted_index.other | 199, 203 |
| abstract_inverted_index.paper | 1 |
| abstract_inverted_index.proof | 185 |
| abstract_inverted_index.squid | 22 |
| abstract_inverted_index.which | 65, 85, 133 |
| abstract_inverted_index.(PDEs) | 121 |
| abstract_inverted_index.Markov | 74 |
| abstract_inverted_index.Unlike | 130 |
| abstract_inverted_index.almost | 145 |
| abstract_inverted_index.devise | 94 |
| abstract_inverted_index.method | 97, 107 |
| abstract_inverted_index.model, | 16 |
| abstract_inverted_index.models | 170 |
| abstract_inverted_index.random | 177, 208 |
| abstract_inverted_index.result | 148 |
| abstract_inverted_index.system | 116, 125 |
| abstract_inverted_index.theory | 190 |
| abstract_inverted_index.(PDMP). | 76 |
| abstract_inverted_index.account | 36 |
| abstract_inverted_index.applied | 197 |
| abstract_inverted_index.broaden | 159 |
| abstract_inverted_index.channel | 179, 205 |
| abstract_inverted_index.current | 161 |
| abstract_inverted_index.effects | 165 |
| abstract_inverted_index.partial | 118 |
| abstract_inverted_index.precise | 151 |
| abstract_inverted_index.process | 75 |
| abstract_inverted_index.spacing | 209 |
| abstract_inverted_index.studies | 31 |
| abstract_inverted_index.thermal | 55 |
| abstract_inverted_index.through | 71 |
| abstract_inverted_index.voltage | 48 |
| abstract_inverted_index.Although | 29 |
| abstract_inverted_index.\infty$. | 129 |
| abstract_inverted_index.behavior | 68 |
| abstract_inverted_index.captured | 70 |
| abstract_inverted_index.channel. | 91 |
| abstract_inverted_index.channels | 45 |
| abstract_inverted_index.defects. | 211 |
| abstract_inverted_index.example. | 28 |
| abstract_inverted_index.existing | 131 |
| abstract_inverted_index.extended | 13, 61 |
| abstract_inverted_index.findings | 158 |
| abstract_inverted_index.membrane | 47 |
| abstract_inverted_index.neuronal | 169 |
| abstract_inverted_index.presents | 2 |
| abstract_inverted_index.randomly | 52 |
| abstract_inverted_index.results, | 132 |
| abstract_inverted_index.rigorous | 4 |
| abstract_inverted_index.simulate | 99 |
| abstract_inverted_index.studies, | 9 |
| abstract_inverted_index.studies. | 110 |
| abstract_inverted_index.studying | 176 |
| abstract_inverted_index.alongside | 7 |
| abstract_inverted_index.analysis, | 6 |
| abstract_inverted_index.classical | 27, 115 |
| abstract_inverted_index.equations | 120 |
| abstract_inverted_index.establish | 143 |
| abstract_inverted_index.introduce | 58 |
| abstract_inverted_index.leverages | 186 |
| abstract_inverted_index.numerical | 96, 106 |
| abstract_inverted_index.potential | 173 |
| abstract_inverted_index.spatially | 12, 60, 167 |
| abstract_inverted_index.$n^{1/3}$. | 156 |
| abstract_inverted_index.illustrate | 104 |
| abstract_inverted_index.regulating | 46 |
| abstract_inverted_index.simulation | 8, 109 |
| abstract_inverted_index.stochastic | 14, 67, 101, 124, 164 |
| abstract_inverted_index.structured | 168 |
| abstract_inverted_index.accommodate | 202 |
| abstract_inverted_index.convergence | 137, 139, 147 |
| abstract_inverted_index.discretized | 79 |
| abstract_inverted_index.potentially | 195 |
| abstract_inverted_index.applications | 174 |
| abstract_inverted_index.approximates | 122 |
| abstract_inverted_index.compartments | 82 |
| abstract_inverted_index.differential | 119 |
| abstract_inverted_index.mathematical | 5 |
| abstract_inverted_index.probability, | 141 |
| abstract_inverted_index.Additionally, | 183 |
| abstract_inverted_index.compartmental | 62 |
| abstract_inverted_index.distributions | 206 |
| abstract_inverted_index.fluctuations. | 56 |
| abstract_inverted_index.neurobiology. | 182 |
| abstract_inverted_index.understanding | 162 |
| abstract_inverted_index.Hodgkin-Huxley | 18 |
| abstract_inverted_index.configurations | 180 |
| abstract_inverted_index.homogenization | 189 |
| abstract_inverted_index.stochasticity, | 38 |
| abstract_inverted_index.electrophysiology | 15, 33 |
| abstract_inverted_index.piecewise-deterministic | 73 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 3 |
| citation_normalized_percentile |