Structural Design Through Reinforcement Learning Article Swipe
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2407.07288
This paper introduces the Structural Optimization gym (SOgym), a novel open-source Reinforcement Learning (RL) environment designed to advance machine learning in Topology Optimization (TO). SOgym enables RL agents to generate physically viable and structurally robust designs by integrating the physics of TO into the reward function. To enhance scalability, SOgym leverages feature-mapping methods as a mesh-independent interface between the environment and the agent, allowing efficient interaction with the design variables regardless of mesh resolution. Baseline results use a model-free Proximal Policy Optimization agent and a model-based DreamerV3 agent. Three observation space configurations were tested. The TopOpt game-inspired configuration, an interactive educational tool that improves students' intuition in designing structures to minimize compliance under volume constraints, performed best in terms of performance and sample efficiency. The 100M parameter version of DreamerV3 produced structures within 54% of the baseline compliance achieved by traditional optimization methods and a 0% disconnection rate, an improvement over supervised learning approaches that often struggle with disconnected load paths. When comparing the learning rates of the agents to those of engineering students from the TopOpt game experiment, the DreamerV3-100M model shows a learning rate approximately four orders of magnitude lower, an impressive feat for a policy trained from scratch through trial and error. These results suggest RL's potential to solve continuous TO problems and its capacity to explore and learn from diverse design solutions. SOgym provides a platform for developing RL agents for complex structural design challenges and is publicly available to support further research in the field.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2407.07288
- https://arxiv.org/pdf/2407.07288
- OA Status
- green
- Cited By
- 2
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4400600675
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4400600675Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2407.07288Digital Object Identifier
- Title
-
Structural Design Through Reinforcement LearningWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-07-10Full publication date if available
- Authors
-
Thomas Rochefort-Beaudoin, Aurélian Vadean, Niels Aage, Sofiane AchicheList of authors in order
- Landing page
-
https://arxiv.org/abs/2407.07288Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2407.07288Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2407.07288Direct OA link when available
- Concepts
-
Reinforcement, Reinforcement learning, Computer science, Psychology, Artificial intelligence, Social psychologyTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
2Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 1, 2024: 1Per-year citation counts (last 5 years)
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4400600675 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2407.07288 |
| ids.doi | https://doi.org/10.48550/arxiv.2407.07288 |
| ids.openalex | https://openalex.org/W4400600675 |
| fwci | |
| type | preprint |
| title | Structural Design Through Reinforcement Learning |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T12487 |
| topics[0].field.id | https://openalex.org/fields/22 |
| topics[0].field.display_name | Engineering |
| topics[0].score | 0.7444999814033508 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2205 |
| topics[0].subfield.display_name | Civil and Structural Engineering |
| topics[0].display_name | Structural Engineering and Vibration Analysis |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C67203356 |
| concepts[0].level | 2 |
| concepts[0].score | 0.6663653254508972 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q1321905 |
| concepts[0].display_name | Reinforcement |
| concepts[1].id | https://openalex.org/C97541855 |
| concepts[1].level | 2 |
| concepts[1].score | 0.6062746644020081 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q830687 |
| concepts[1].display_name | Reinforcement learning |
| concepts[2].id | https://openalex.org/C41008148 |
| concepts[2].level | 0 |
| concepts[2].score | 0.35507139563560486 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[2].display_name | Computer science |
| concepts[3].id | https://openalex.org/C15744967 |
| concepts[3].level | 0 |
| concepts[3].score | 0.29423755407333374 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q9418 |
| concepts[3].display_name | Psychology |
| concepts[4].id | https://openalex.org/C154945302 |
| concepts[4].level | 1 |
| concepts[4].score | 0.25010669231414795 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[4].display_name | Artificial intelligence |
| concepts[5].id | https://openalex.org/C77805123 |
| concepts[5].level | 1 |
| concepts[5].score | 0.13218432664871216 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q161272 |
| concepts[5].display_name | Social psychology |
| keywords[0].id | https://openalex.org/keywords/reinforcement |
| keywords[0].score | 0.6663653254508972 |
| keywords[0].display_name | Reinforcement |
| keywords[1].id | https://openalex.org/keywords/reinforcement-learning |
| keywords[1].score | 0.6062746644020081 |
| keywords[1].display_name | Reinforcement learning |
| keywords[2].id | https://openalex.org/keywords/computer-science |
| keywords[2].score | 0.35507139563560486 |
| keywords[2].display_name | Computer science |
| keywords[3].id | https://openalex.org/keywords/psychology |
| keywords[3].score | 0.29423755407333374 |
| keywords[3].display_name | Psychology |
| keywords[4].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[4].score | 0.25010669231414795 |
| keywords[4].display_name | Artificial intelligence |
| keywords[5].id | https://openalex.org/keywords/social-psychology |
| keywords[5].score | 0.13218432664871216 |
| keywords[5].display_name | Social psychology |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2407.07288 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2407.07288 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2407.07288 |
| locations[1].id | doi:10.48550/arxiv.2407.07288 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2407.07288 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5036669118 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-6382-597X |
| authorships[0].author.display_name | Thomas Rochefort-Beaudoin |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Rochefort-Beaudoin, Thomas |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5087367510 |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | Aurélian Vadean |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Vadean, Aurelian |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5017489087 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-3042-0036 |
| authorships[2].author.display_name | Niels Aage |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Aage, Niels |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5070138703 |
| authorships[3].author.orcid | |
| authorships[3].author.display_name | Sofiane Achiche |
| authorships[3].author_position | last |
| authorships[3].raw_author_name | Achiche, Sofiane |
| authorships[3].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2407.07288 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Structural Design Through Reinforcement Learning |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T12487 |
| primary_topic.field.id | https://openalex.org/fields/22 |
| primary_topic.field.display_name | Engineering |
| primary_topic.score | 0.7444999814033508 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2205 |
| primary_topic.subfield.display_name | Civil and Structural Engineering |
| primary_topic.display_name | Structural Engineering and Vibration Analysis |
| related_works | https://openalex.org/W4391375266, https://openalex.org/W2748952813, https://openalex.org/W2920061524, https://openalex.org/W4310083477, https://openalex.org/W2328553770, https://openalex.org/W1977959518, https://openalex.org/W2038908348, https://openalex.org/W2107890255, https://openalex.org/W2106552856, https://openalex.org/W2145821588 |
| cited_by_count | 2 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 1 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 1 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2407.07288 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2407.07288 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2407.07288 |
| primary_location.id | pmh:oai:arXiv.org:2407.07288 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2407.07288 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2407.07288 |
| publication_date | 2024-07-10 |
| publication_year | 2024 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 8, 54, 77, 84, 144, 183, 196, 228 |
| abstract_inverted_index.0% | 145 |
| abstract_inverted_index.RL | 26, 232 |
| abstract_inverted_index.TO | 41, 213 |
| abstract_inverted_index.To | 46 |
| abstract_inverted_index.an | 98, 148, 192 |
| abstract_inverted_index.as | 53 |
| abstract_inverted_index.by | 36, 139 |
| abstract_inverted_index.in | 20, 106, 117, 247 |
| abstract_inverted_index.is | 240 |
| abstract_inverted_index.of | 40, 71, 119, 128, 134, 166, 171, 189 |
| abstract_inverted_index.to | 16, 28, 109, 169, 210, 218, 243 |
| abstract_inverted_index.54% | 133 |
| abstract_inverted_index.The | 94, 124 |
| abstract_inverted_index.and | 32, 60, 83, 121, 143, 203, 215, 220, 239 |
| abstract_inverted_index.for | 195, 230, 234 |
| abstract_inverted_index.gym | 6 |
| abstract_inverted_index.its | 216 |
| abstract_inverted_index.the | 3, 38, 43, 58, 61, 67, 135, 163, 167, 175, 179, 248 |
| abstract_inverted_index.use | 76 |
| abstract_inverted_index.(RL) | 13 |
| abstract_inverted_index.100M | 125 |
| abstract_inverted_index.RL's | 208 |
| abstract_inverted_index.This | 0 |
| abstract_inverted_index.When | 161 |
| abstract_inverted_index.best | 116 |
| abstract_inverted_index.feat | 194 |
| abstract_inverted_index.four | 187 |
| abstract_inverted_index.from | 174, 199, 222 |
| abstract_inverted_index.game | 177 |
| abstract_inverted_index.into | 42 |
| abstract_inverted_index.load | 159 |
| abstract_inverted_index.mesh | 72 |
| abstract_inverted_index.over | 150 |
| abstract_inverted_index.rate | 185 |
| abstract_inverted_index.that | 102, 154 |
| abstract_inverted_index.tool | 101 |
| abstract_inverted_index.were | 92 |
| abstract_inverted_index.with | 66, 157 |
| abstract_inverted_index.(TO). | 23 |
| abstract_inverted_index.SOgym | 24, 49, 226 |
| abstract_inverted_index.These | 205 |
| abstract_inverted_index.Three | 88 |
| abstract_inverted_index.agent | 82 |
| abstract_inverted_index.learn | 221 |
| abstract_inverted_index.model | 181 |
| abstract_inverted_index.novel | 9 |
| abstract_inverted_index.often | 155 |
| abstract_inverted_index.paper | 1 |
| abstract_inverted_index.rate, | 147 |
| abstract_inverted_index.rates | 165 |
| abstract_inverted_index.shows | 182 |
| abstract_inverted_index.solve | 211 |
| abstract_inverted_index.space | 90 |
| abstract_inverted_index.terms | 118 |
| abstract_inverted_index.those | 170 |
| abstract_inverted_index.trial | 202 |
| abstract_inverted_index.under | 112 |
| abstract_inverted_index.Policy | 80 |
| abstract_inverted_index.TopOpt | 95, 176 |
| abstract_inverted_index.agent, | 62 |
| abstract_inverted_index.agent. | 87 |
| abstract_inverted_index.agents | 27, 168, 233 |
| abstract_inverted_index.design | 68, 224, 237 |
| abstract_inverted_index.error. | 204 |
| abstract_inverted_index.field. | 249 |
| abstract_inverted_index.lower, | 191 |
| abstract_inverted_index.orders | 188 |
| abstract_inverted_index.paths. | 160 |
| abstract_inverted_index.policy | 197 |
| abstract_inverted_index.reward | 44 |
| abstract_inverted_index.robust | 34 |
| abstract_inverted_index.sample | 122 |
| abstract_inverted_index.viable | 31 |
| abstract_inverted_index.volume | 113 |
| abstract_inverted_index.within | 132 |
| abstract_inverted_index.advance | 17 |
| abstract_inverted_index.between | 57 |
| abstract_inverted_index.complex | 235 |
| abstract_inverted_index.designs | 35 |
| abstract_inverted_index.diverse | 223 |
| abstract_inverted_index.enables | 25 |
| abstract_inverted_index.enhance | 47 |
| abstract_inverted_index.explore | 219 |
| abstract_inverted_index.further | 245 |
| abstract_inverted_index.machine | 18 |
| abstract_inverted_index.methods | 52, 142 |
| abstract_inverted_index.physics | 39 |
| abstract_inverted_index.results | 75, 206 |
| abstract_inverted_index.scratch | 200 |
| abstract_inverted_index.suggest | 207 |
| abstract_inverted_index.support | 244 |
| abstract_inverted_index.tested. | 93 |
| abstract_inverted_index.through | 201 |
| abstract_inverted_index.trained | 198 |
| abstract_inverted_index.version | 127 |
| abstract_inverted_index.(SOgym), | 7 |
| abstract_inverted_index.Baseline | 74 |
| abstract_inverted_index.Learning | 12 |
| abstract_inverted_index.Proximal | 79 |
| abstract_inverted_index.Topology | 21 |
| abstract_inverted_index.achieved | 138 |
| abstract_inverted_index.allowing | 63 |
| abstract_inverted_index.baseline | 136 |
| abstract_inverted_index.capacity | 217 |
| abstract_inverted_index.designed | 15 |
| abstract_inverted_index.generate | 29 |
| abstract_inverted_index.improves | 103 |
| abstract_inverted_index.learning | 19, 152, 164, 184 |
| abstract_inverted_index.minimize | 110 |
| abstract_inverted_index.platform | 229 |
| abstract_inverted_index.problems | 214 |
| abstract_inverted_index.produced | 130 |
| abstract_inverted_index.provides | 227 |
| abstract_inverted_index.publicly | 241 |
| abstract_inverted_index.research | 246 |
| abstract_inverted_index.struggle | 156 |
| abstract_inverted_index.students | 173 |
| abstract_inverted_index.DreamerV3 | 86, 129 |
| abstract_inverted_index.available | 242 |
| abstract_inverted_index.comparing | 162 |
| abstract_inverted_index.designing | 107 |
| abstract_inverted_index.efficient | 64 |
| abstract_inverted_index.function. | 45 |
| abstract_inverted_index.interface | 56 |
| abstract_inverted_index.intuition | 105 |
| abstract_inverted_index.leverages | 50 |
| abstract_inverted_index.magnitude | 190 |
| abstract_inverted_index.parameter | 126 |
| abstract_inverted_index.performed | 115 |
| abstract_inverted_index.potential | 209 |
| abstract_inverted_index.students' | 104 |
| abstract_inverted_index.variables | 69 |
| abstract_inverted_index.Structural | 4 |
| abstract_inverted_index.approaches | 153 |
| abstract_inverted_index.challenges | 238 |
| abstract_inverted_index.compliance | 111, 137 |
| abstract_inverted_index.continuous | 212 |
| abstract_inverted_index.developing | 231 |
| abstract_inverted_index.impressive | 193 |
| abstract_inverted_index.introduces | 2 |
| abstract_inverted_index.model-free | 78 |
| abstract_inverted_index.physically | 30 |
| abstract_inverted_index.regardless | 70 |
| abstract_inverted_index.solutions. | 225 |
| abstract_inverted_index.structural | 236 |
| abstract_inverted_index.structures | 108, 131 |
| abstract_inverted_index.supervised | 151 |
| abstract_inverted_index.educational | 100 |
| abstract_inverted_index.efficiency. | 123 |
| abstract_inverted_index.engineering | 172 |
| abstract_inverted_index.environment | 14, 59 |
| abstract_inverted_index.experiment, | 178 |
| abstract_inverted_index.improvement | 149 |
| abstract_inverted_index.integrating | 37 |
| abstract_inverted_index.interaction | 65 |
| abstract_inverted_index.interactive | 99 |
| abstract_inverted_index.model-based | 85 |
| abstract_inverted_index.observation | 89 |
| abstract_inverted_index.open-source | 10 |
| abstract_inverted_index.performance | 120 |
| abstract_inverted_index.resolution. | 73 |
| abstract_inverted_index.traditional | 140 |
| abstract_inverted_index.Optimization | 5, 22, 81 |
| abstract_inverted_index.constraints, | 114 |
| abstract_inverted_index.disconnected | 158 |
| abstract_inverted_index.optimization | 141 |
| abstract_inverted_index.scalability, | 48 |
| abstract_inverted_index.structurally | 33 |
| abstract_inverted_index.Reinforcement | 11 |
| abstract_inverted_index.approximately | 186 |
| abstract_inverted_index.disconnection | 146 |
| abstract_inverted_index.game-inspired | 96 |
| abstract_inverted_index.DreamerV3-100M | 180 |
| abstract_inverted_index.configuration, | 97 |
| abstract_inverted_index.configurations | 91 |
| abstract_inverted_index.feature-mapping | 51 |
| abstract_inverted_index.mesh-independent | 55 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 4 |
| citation_normalized_percentile |