Structural Nested Mean Models Under Parallel Trends with Interference Article Swipe
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2405.11781
Despite the common occurrence of interference in Difference-in-Differences (DiD) applications, standard DiD methods rely on an assumption that interference is absent, and comparatively little work has considered how to accommodate and learn about spillover effects within a DiD framework. Here, we extend the `DiD-SNMMs' of Shahn et al (2022) to accommodate interference in a time-varying DiD setting. Doing so enables estimation of a richer set of effects than previous DiD approaches. For example, DiD-SNMMs do not assume the absence of spillover effects after direct exposures and can model how effects of direct or indirect (i.e. spillover) exposures depend on past and concurrent (direct or indirect) exposure and covariate history. We consider both cluster and network interference structures and illustrate the methodology in simulations and an application to effects of Medicaid expansion on uninsurance rates.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2405.11781
- https://arxiv.org/pdf/2405.11781
- OA Status
- green
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4398192322
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4398192322Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2405.11781Digital Object Identifier
- Title
-
Structural Nested Mean Models Under Parallel Trends with InterferenceWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-05-20Full publication date if available
- Authors
-
Zach Shahn, Paul N. Zivich, Audrey RensonList of authors in order
- Landing page
-
https://arxiv.org/abs/2405.11781Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2405.11781Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2405.11781Direct OA link when available
- Concepts
-
Interference (communication), Nested set model, Computer science, Econometrics, Mathematics, Telecommunications, Data mining, Channel (broadcasting), Relational databaseTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4398192322 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2405.11781 |
| ids.doi | https://doi.org/10.48550/arxiv.2405.11781 |
| ids.openalex | https://openalex.org/W4398192322 |
| fwci | |
| type | preprint |
| title | Structural Nested Mean Models Under Parallel Trends with Interference |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T11901 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.5443999767303467 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1702 |
| topics[0].subfield.display_name | Artificial Intelligence |
| topics[0].display_name | Bayesian Methods and Mixture Models |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C32022120 |
| concepts[0].level | 3 |
| concepts[0].score | 0.5553459525108337 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q797225 |
| concepts[0].display_name | Interference (communication) |
| concepts[1].id | https://openalex.org/C103000020 |
| concepts[1].level | 3 |
| concepts[1].score | 0.49727967381477356 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q1978426 |
| concepts[1].display_name | Nested set model |
| concepts[2].id | https://openalex.org/C41008148 |
| concepts[2].level | 0 |
| concepts[2].score | 0.3968397080898285 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[2].display_name | Computer science |
| concepts[3].id | https://openalex.org/C149782125 |
| concepts[3].level | 1 |
| concepts[3].score | 0.3672275245189667 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q160039 |
| concepts[3].display_name | Econometrics |
| concepts[4].id | https://openalex.org/C33923547 |
| concepts[4].level | 0 |
| concepts[4].score | 0.29263046383857727 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[4].display_name | Mathematics |
| concepts[5].id | https://openalex.org/C76155785 |
| concepts[5].level | 1 |
| concepts[5].score | 0.23065432906150818 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q418 |
| concepts[5].display_name | Telecommunications |
| concepts[6].id | https://openalex.org/C124101348 |
| concepts[6].level | 1 |
| concepts[6].score | 0.13496160507202148 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q172491 |
| concepts[6].display_name | Data mining |
| concepts[7].id | https://openalex.org/C127162648 |
| concepts[7].level | 2 |
| concepts[7].score | 0.0 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q16858953 |
| concepts[7].display_name | Channel (broadcasting) |
| concepts[8].id | https://openalex.org/C5655090 |
| concepts[8].level | 2 |
| concepts[8].score | 0.0 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q192588 |
| concepts[8].display_name | Relational database |
| keywords[0].id | https://openalex.org/keywords/interference |
| keywords[0].score | 0.5553459525108337 |
| keywords[0].display_name | Interference (communication) |
| keywords[1].id | https://openalex.org/keywords/nested-set-model |
| keywords[1].score | 0.49727967381477356 |
| keywords[1].display_name | Nested set model |
| keywords[2].id | https://openalex.org/keywords/computer-science |
| keywords[2].score | 0.3968397080898285 |
| keywords[2].display_name | Computer science |
| keywords[3].id | https://openalex.org/keywords/econometrics |
| keywords[3].score | 0.3672275245189667 |
| keywords[3].display_name | Econometrics |
| keywords[4].id | https://openalex.org/keywords/mathematics |
| keywords[4].score | 0.29263046383857727 |
| keywords[4].display_name | Mathematics |
| keywords[5].id | https://openalex.org/keywords/telecommunications |
| keywords[5].score | 0.23065432906150818 |
| keywords[5].display_name | Telecommunications |
| keywords[6].id | https://openalex.org/keywords/data-mining |
| keywords[6].score | 0.13496160507202148 |
| keywords[6].display_name | Data mining |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2405.11781 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2405.11781 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2405.11781 |
| locations[1].id | doi:10.48550/arxiv.2405.11781 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | cc-by |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | https://openalex.org/licenses/cc-by |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2405.11781 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5042387576 |
| authorships[0].author.orcid | https://orcid.org/0000-0003-1014-8837 |
| authorships[0].author.display_name | Zach Shahn |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Shahn, Zach |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5084981711 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-9932-1095 |
| authorships[1].author.display_name | Paul N. Zivich |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Zivich, Paul |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5030609254 |
| authorships[2].author.orcid | https://orcid.org/0000-0003-1603-2587 |
| authorships[2].author.display_name | Audrey Renson |
| authorships[2].author_position | last |
| authorships[2].raw_author_name | Renson, Audrey |
| authorships[2].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2405.11781 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Structural Nested Mean Models Under Parallel Trends with Interference |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T11901 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.5443999767303467 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1702 |
| primary_topic.subfield.display_name | Artificial Intelligence |
| primary_topic.display_name | Bayesian Methods and Mixture Models |
| related_works | https://openalex.org/W4391375266, https://openalex.org/W2748952813, https://openalex.org/W2390279801, https://openalex.org/W2358668433, https://openalex.org/W4396701345, https://openalex.org/W2376932109, https://openalex.org/W2001405890, https://openalex.org/W4396696052, https://openalex.org/W2382290278, https://openalex.org/W4395014643 |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2405.11781 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2405.11781 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2405.11781 |
| primary_location.id | pmh:oai:arXiv.org:2405.11781 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2405.11781 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2405.11781 |
| publication_date | 2024-05-20 |
| publication_year | 2024 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 36, 53, 62 |
| abstract_inverted_index.We | 109 |
| abstract_inverted_index.al | 47 |
| abstract_inverted_index.an | 15, 124 |
| abstract_inverted_index.do | 74 |
| abstract_inverted_index.et | 46 |
| abstract_inverted_index.in | 6, 52, 121 |
| abstract_inverted_index.is | 19 |
| abstract_inverted_index.of | 4, 44, 61, 65, 79, 90, 128 |
| abstract_inverted_index.on | 14, 98, 131 |
| abstract_inverted_index.or | 92, 103 |
| abstract_inverted_index.so | 58 |
| abstract_inverted_index.to | 28, 49, 126 |
| abstract_inverted_index.we | 40 |
| abstract_inverted_index.DiD | 11, 37, 55, 69 |
| abstract_inverted_index.For | 71 |
| abstract_inverted_index.and | 21, 30, 85, 100, 106, 113, 117, 123 |
| abstract_inverted_index.can | 86 |
| abstract_inverted_index.has | 25 |
| abstract_inverted_index.how | 27, 88 |
| abstract_inverted_index.not | 75 |
| abstract_inverted_index.set | 64 |
| abstract_inverted_index.the | 1, 42, 77, 119 |
| abstract_inverted_index.both | 111 |
| abstract_inverted_index.past | 99 |
| abstract_inverted_index.rely | 13 |
| abstract_inverted_index.than | 67 |
| abstract_inverted_index.that | 17 |
| abstract_inverted_index.work | 24 |
| abstract_inverted_index.(DiD) | 8 |
| abstract_inverted_index.(i.e. | 94 |
| abstract_inverted_index.Doing | 57 |
| abstract_inverted_index.Here, | 39 |
| abstract_inverted_index.Shahn | 45 |
| abstract_inverted_index.about | 32 |
| abstract_inverted_index.after | 82 |
| abstract_inverted_index.learn | 31 |
| abstract_inverted_index.model | 87 |
| abstract_inverted_index.(2022) | 48 |
| abstract_inverted_index.assume | 76 |
| abstract_inverted_index.common | 2 |
| abstract_inverted_index.depend | 97 |
| abstract_inverted_index.direct | 83, 91 |
| abstract_inverted_index.extend | 41 |
| abstract_inverted_index.little | 23 |
| abstract_inverted_index.rates. | 133 |
| abstract_inverted_index.richer | 63 |
| abstract_inverted_index.within | 35 |
| abstract_inverted_index.(direct | 102 |
| abstract_inverted_index.Despite | 0 |
| abstract_inverted_index.absence | 78 |
| abstract_inverted_index.absent, | 20 |
| abstract_inverted_index.cluster | 112 |
| abstract_inverted_index.effects | 34, 66, 81, 89, 127 |
| abstract_inverted_index.enables | 59 |
| abstract_inverted_index.methods | 12 |
| abstract_inverted_index.network | 114 |
| abstract_inverted_index.Medicaid | 129 |
| abstract_inverted_index.consider | 110 |
| abstract_inverted_index.example, | 72 |
| abstract_inverted_index.exposure | 105 |
| abstract_inverted_index.history. | 108 |
| abstract_inverted_index.indirect | 93 |
| abstract_inverted_index.previous | 68 |
| abstract_inverted_index.setting. | 56 |
| abstract_inverted_index.standard | 10 |
| abstract_inverted_index.DiD-SNMMs | 73 |
| abstract_inverted_index.covariate | 107 |
| abstract_inverted_index.expansion | 130 |
| abstract_inverted_index.exposures | 84, 96 |
| abstract_inverted_index.indirect) | 104 |
| abstract_inverted_index.spillover | 33, 80 |
| abstract_inverted_index.assumption | 16 |
| abstract_inverted_index.concurrent | 101 |
| abstract_inverted_index.considered | 26 |
| abstract_inverted_index.estimation | 60 |
| abstract_inverted_index.framework. | 38 |
| abstract_inverted_index.illustrate | 118 |
| abstract_inverted_index.occurrence | 3 |
| abstract_inverted_index.spillover) | 95 |
| abstract_inverted_index.structures | 116 |
| abstract_inverted_index.`DiD-SNMMs' | 43 |
| abstract_inverted_index.accommodate | 29, 50 |
| abstract_inverted_index.application | 125 |
| abstract_inverted_index.approaches. | 70 |
| abstract_inverted_index.methodology | 120 |
| abstract_inverted_index.simulations | 122 |
| abstract_inverted_index.uninsurance | 132 |
| abstract_inverted_index.interference | 5, 18, 51, 115 |
| abstract_inverted_index.time-varying | 54 |
| abstract_inverted_index.applications, | 9 |
| abstract_inverted_index.comparatively | 22 |
| abstract_inverted_index.Difference-in-Differences | 7 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 3 |
| citation_normalized_percentile |