Structure Flow-Guided Network for Real Depth Super-Resolution Article Swipe
YOU?
·
· 2023
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2301.13416
Real depth super-resolution (DSR), unlike synthetic settings, is a challenging task due to the structural distortion and the edge noise caused by the natural degradation in real-world low-resolution (LR) depth maps. These defeats result in significant structure inconsistency between the depth map and the RGB guidance, which potentially confuses the RGB-structure guidance and thereby degrades the DSR quality. In this paper, we propose a novel structure flow-guided DSR framework, where a cross-modality flow map is learned to guide the RGB-structure information transferring for precise depth upsampling. Specifically, our framework consists of a cross-modality flow-guided upsampling network (CFUNet) and a flow-enhanced pyramid edge attention network (PEANet). CFUNet contains a trilateral self-attention module combining both the geometric and semantic correlations for reliable cross-modality flow learning. Then, the learned flow maps are combined with the grid-sampling mechanism for coarse high-resolution (HR) depth prediction. PEANet targets at integrating the learned flow map as the edge attention into a pyramid network to hierarchically learn the edge-focused guidance feature for depth edge refinement. Extensive experiments on real and synthetic DSR datasets verify that our approach achieves excellent performance compared to state-of-the-art methods.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2301.13416
- https://arxiv.org/pdf/2301.13416
- OA Status
- green
- Cited By
- 1
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4318905124
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4318905124Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2301.13416Digital Object Identifier
- Title
-
Structure Flow-Guided Network for Real Depth Super-ResolutionWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2023Year of publication
- Publication date
-
2023-01-31Full publication date if available
- Authors
-
Jiayi Yuan, Haobo Jiang, Xiang Li, Jianjun Qian, Jun Li, Jian YangList of authors in order
- Landing page
-
https://arxiv.org/abs/2301.13416Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2301.13416Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2301.13416Direct OA link when available
- Concepts
-
Upsampling, Artificial intelligence, Computer science, Pyramid (geometry), RGB color model, Computer vision, Depth map, Enhanced Data Rates for GSM Evolution, Grid, Feature (linguistics), Flow (mathematics), Distortion (music), Modality (human–computer interaction), Image (mathematics), Mathematics, Geometry, Bandwidth (computing), Computer network, Linguistics, Philosophy, AmplifierTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
1Total citation count in OpenAlex
- Citations by year (recent)
-
2024: 1Per-year citation counts (last 5 years)
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4318905124 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2301.13416 |
| ids.doi | https://doi.org/10.48550/arxiv.2301.13416 |
| ids.openalex | https://openalex.org/W4318905124 |
| fwci | |
| type | preprint |
| title | Structure Flow-Guided Network for Real Depth Super-Resolution |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10531 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9997000098228455 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1707 |
| topics[0].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[0].display_name | Advanced Vision and Imaging |
| topics[1].id | https://openalex.org/T13114 |
| topics[1].field.id | https://openalex.org/fields/22 |
| topics[1].field.display_name | Engineering |
| topics[1].score | 0.9962999820709229 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2214 |
| topics[1].subfield.display_name | Media Technology |
| topics[1].display_name | Image Processing Techniques and Applications |
| topics[2].id | https://openalex.org/T10638 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9940000176429749 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1707 |
| topics[2].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[2].display_name | Optical measurement and interference techniques |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C110384440 |
| concepts[0].level | 3 |
| concepts[0].score | 0.8477170467376709 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q1143270 |
| concepts[0].display_name | Upsampling |
| concepts[1].id | https://openalex.org/C154945302 |
| concepts[1].level | 1 |
| concepts[1].score | 0.7053560614585876 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[1].display_name | Artificial intelligence |
| concepts[2].id | https://openalex.org/C41008148 |
| concepts[2].level | 0 |
| concepts[2].score | 0.6556838154792786 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[2].display_name | Computer science |
| concepts[3].id | https://openalex.org/C142575187 |
| concepts[3].level | 2 |
| concepts[3].score | 0.6458224058151245 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q3358290 |
| concepts[3].display_name | Pyramid (geometry) |
| concepts[4].id | https://openalex.org/C82990744 |
| concepts[4].level | 2 |
| concepts[4].score | 0.6288450956344604 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q166194 |
| concepts[4].display_name | RGB color model |
| concepts[5].id | https://openalex.org/C31972630 |
| concepts[5].level | 1 |
| concepts[5].score | 0.6038086414337158 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q844240 |
| concepts[5].display_name | Computer vision |
| concepts[6].id | https://openalex.org/C141268832 |
| concepts[6].level | 3 |
| concepts[6].score | 0.5774432420730591 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q2940499 |
| concepts[6].display_name | Depth map |
| concepts[7].id | https://openalex.org/C162307627 |
| concepts[7].level | 2 |
| concepts[7].score | 0.5503545999526978 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q204833 |
| concepts[7].display_name | Enhanced Data Rates for GSM Evolution |
| concepts[8].id | https://openalex.org/C187691185 |
| concepts[8].level | 2 |
| concepts[8].score | 0.4944915771484375 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q2020720 |
| concepts[8].display_name | Grid |
| concepts[9].id | https://openalex.org/C2776401178 |
| concepts[9].level | 2 |
| concepts[9].score | 0.4731800854206085 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q12050496 |
| concepts[9].display_name | Feature (linguistics) |
| concepts[10].id | https://openalex.org/C38349280 |
| concepts[10].level | 2 |
| concepts[10].score | 0.4433422386646271 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q1434290 |
| concepts[10].display_name | Flow (mathematics) |
| concepts[11].id | https://openalex.org/C126780896 |
| concepts[11].level | 4 |
| concepts[11].score | 0.42852669954299927 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q899871 |
| concepts[11].display_name | Distortion (music) |
| concepts[12].id | https://openalex.org/C2780226545 |
| concepts[12].level | 2 |
| concepts[12].score | 0.41587361693382263 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q6888030 |
| concepts[12].display_name | Modality (human–computer interaction) |
| concepts[13].id | https://openalex.org/C115961682 |
| concepts[13].level | 2 |
| concepts[13].score | 0.2374742329120636 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q860623 |
| concepts[13].display_name | Image (mathematics) |
| concepts[14].id | https://openalex.org/C33923547 |
| concepts[14].level | 0 |
| concepts[14].score | 0.14549556374549866 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[14].display_name | Mathematics |
| concepts[15].id | https://openalex.org/C2524010 |
| concepts[15].level | 1 |
| concepts[15].score | 0.07147654891014099 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q8087 |
| concepts[15].display_name | Geometry |
| concepts[16].id | https://openalex.org/C2776257435 |
| concepts[16].level | 2 |
| concepts[16].score | 0.0 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q1576430 |
| concepts[16].display_name | Bandwidth (computing) |
| concepts[17].id | https://openalex.org/C31258907 |
| concepts[17].level | 1 |
| concepts[17].score | 0.0 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q1301371 |
| concepts[17].display_name | Computer network |
| concepts[18].id | https://openalex.org/C41895202 |
| concepts[18].level | 1 |
| concepts[18].score | 0.0 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q8162 |
| concepts[18].display_name | Linguistics |
| concepts[19].id | https://openalex.org/C138885662 |
| concepts[19].level | 0 |
| concepts[19].score | 0.0 |
| concepts[19].wikidata | https://www.wikidata.org/wiki/Q5891 |
| concepts[19].display_name | Philosophy |
| concepts[20].id | https://openalex.org/C194257627 |
| concepts[20].level | 3 |
| concepts[20].score | 0.0 |
| concepts[20].wikidata | https://www.wikidata.org/wiki/Q211554 |
| concepts[20].display_name | Amplifier |
| keywords[0].id | https://openalex.org/keywords/upsampling |
| keywords[0].score | 0.8477170467376709 |
| keywords[0].display_name | Upsampling |
| keywords[1].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[1].score | 0.7053560614585876 |
| keywords[1].display_name | Artificial intelligence |
| keywords[2].id | https://openalex.org/keywords/computer-science |
| keywords[2].score | 0.6556838154792786 |
| keywords[2].display_name | Computer science |
| keywords[3].id | https://openalex.org/keywords/pyramid |
| keywords[3].score | 0.6458224058151245 |
| keywords[3].display_name | Pyramid (geometry) |
| keywords[4].id | https://openalex.org/keywords/rgb-color-model |
| keywords[4].score | 0.6288450956344604 |
| keywords[4].display_name | RGB color model |
| keywords[5].id | https://openalex.org/keywords/computer-vision |
| keywords[5].score | 0.6038086414337158 |
| keywords[5].display_name | Computer vision |
| keywords[6].id | https://openalex.org/keywords/depth-map |
| keywords[6].score | 0.5774432420730591 |
| keywords[6].display_name | Depth map |
| keywords[7].id | https://openalex.org/keywords/enhanced-data-rates-for-gsm-evolution |
| keywords[7].score | 0.5503545999526978 |
| keywords[7].display_name | Enhanced Data Rates for GSM Evolution |
| keywords[8].id | https://openalex.org/keywords/grid |
| keywords[8].score | 0.4944915771484375 |
| keywords[8].display_name | Grid |
| keywords[9].id | https://openalex.org/keywords/feature |
| keywords[9].score | 0.4731800854206085 |
| keywords[9].display_name | Feature (linguistics) |
| keywords[10].id | https://openalex.org/keywords/flow |
| keywords[10].score | 0.4433422386646271 |
| keywords[10].display_name | Flow (mathematics) |
| keywords[11].id | https://openalex.org/keywords/distortion |
| keywords[11].score | 0.42852669954299927 |
| keywords[11].display_name | Distortion (music) |
| keywords[12].id | https://openalex.org/keywords/modality |
| keywords[12].score | 0.41587361693382263 |
| keywords[12].display_name | Modality (human–computer interaction) |
| keywords[13].id | https://openalex.org/keywords/image |
| keywords[13].score | 0.2374742329120636 |
| keywords[13].display_name | Image (mathematics) |
| keywords[14].id | https://openalex.org/keywords/mathematics |
| keywords[14].score | 0.14549556374549866 |
| keywords[14].display_name | Mathematics |
| keywords[15].id | https://openalex.org/keywords/geometry |
| keywords[15].score | 0.07147654891014099 |
| keywords[15].display_name | Geometry |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2301.13416 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2301.13416 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2301.13416 |
| locations[1].id | doi:10.48550/arxiv.2301.13416 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2301.13416 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5100309335 |
| authorships[0].author.orcid | https://orcid.org/0000-0001-8315-7609 |
| authorships[0].author.display_name | Jiayi Yuan |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Yuan, Jiayi |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5051412865 |
| authorships[1].author.orcid | https://orcid.org/0000-0003-1357-1315 |
| authorships[1].author.display_name | Haobo Jiang |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Jiang, Haobo |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5100693026 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-4996-7365 |
| authorships[2].author.display_name | Xiang Li |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Li, Xiang |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5064363522 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-0968-8556 |
| authorships[3].author.display_name | Jianjun Qian |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Qian, Jianjun |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5100361625 |
| authorships[4].author.orcid | https://orcid.org/0000-0001-5845-8602 |
| authorships[4].author.display_name | Jun Li |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Li, Jun |
| authorships[4].is_corresponding | False |
| authorships[5].author.id | https://openalex.org/A5100726984 |
| authorships[5].author.orcid | https://orcid.org/0000-0003-4800-832X |
| authorships[5].author.display_name | Jian Yang |
| authorships[5].author_position | last |
| authorships[5].raw_author_name | Yang, Jian |
| authorships[5].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2301.13416 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Structure Flow-Guided Network for Real Depth Super-Resolution |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T10531 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9997000098228455 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1707 |
| primary_topic.subfield.display_name | Computer Vision and Pattern Recognition |
| primary_topic.display_name | Advanced Vision and Imaging |
| related_works | https://openalex.org/W2795471480, https://openalex.org/W3149642877, https://openalex.org/W3215923428, https://openalex.org/W2520322935, https://openalex.org/W3005941135, https://openalex.org/W2086087387, https://openalex.org/W2104324080, https://openalex.org/W2027589961, https://openalex.org/W2140069086, https://openalex.org/W4328027016 |
| cited_by_count | 1 |
| counts_by_year[0].year | 2024 |
| counts_by_year[0].cited_by_count | 1 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2301.13416 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2301.13416 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2301.13416 |
| primary_location.id | pmh:oai:arXiv.org:2301.13416 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2301.13416 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2301.13416 |
| publication_date | 2023-01-31 |
| publication_year | 2023 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 8, 63, 70, 91, 98, 107, 153 |
| abstract_inverted_index.In | 58 |
| abstract_inverted_index.as | 148 |
| abstract_inverted_index.at | 142 |
| abstract_inverted_index.by | 21 |
| abstract_inverted_index.in | 25, 34 |
| abstract_inverted_index.is | 7, 74 |
| abstract_inverted_index.of | 90 |
| abstract_inverted_index.on | 169 |
| abstract_inverted_index.to | 12, 76, 156, 183 |
| abstract_inverted_index.we | 61 |
| abstract_inverted_index.DSR | 56, 67, 173 |
| abstract_inverted_index.RGB | 44 |
| abstract_inverted_index.and | 16, 42, 52, 97, 115, 171 |
| abstract_inverted_index.are | 128 |
| abstract_inverted_index.due | 11 |
| abstract_inverted_index.for | 82, 118, 134, 163 |
| abstract_inverted_index.map | 41, 73, 147 |
| abstract_inverted_index.our | 87, 177 |
| abstract_inverted_index.the | 13, 17, 22, 39, 43, 49, 55, 78, 113, 124, 131, 144, 149, 159 |
| abstract_inverted_index.(HR) | 137 |
| abstract_inverted_index.(LR) | 28 |
| abstract_inverted_index.Real | 0 |
| abstract_inverted_index.both | 112 |
| abstract_inverted_index.edge | 18, 101, 150, 165 |
| abstract_inverted_index.flow | 72, 121, 126, 146 |
| abstract_inverted_index.into | 152 |
| abstract_inverted_index.maps | 127 |
| abstract_inverted_index.real | 170 |
| abstract_inverted_index.task | 10 |
| abstract_inverted_index.that | 176 |
| abstract_inverted_index.this | 59 |
| abstract_inverted_index.with | 130 |
| abstract_inverted_index.Then, | 123 |
| abstract_inverted_index.These | 31 |
| abstract_inverted_index.depth | 1, 29, 40, 84, 138, 164 |
| abstract_inverted_index.guide | 77 |
| abstract_inverted_index.learn | 158 |
| abstract_inverted_index.maps. | 30 |
| abstract_inverted_index.noise | 19 |
| abstract_inverted_index.novel | 64 |
| abstract_inverted_index.where | 69 |
| abstract_inverted_index.which | 46 |
| abstract_inverted_index.(DSR), | 3 |
| abstract_inverted_index.CFUNet | 105 |
| abstract_inverted_index.PEANet | 140 |
| abstract_inverted_index.caused | 20 |
| abstract_inverted_index.coarse | 135 |
| abstract_inverted_index.module | 110 |
| abstract_inverted_index.paper, | 60 |
| abstract_inverted_index.result | 33 |
| abstract_inverted_index.unlike | 4 |
| abstract_inverted_index.verify | 175 |
| abstract_inverted_index.between | 38 |
| abstract_inverted_index.defeats | 32 |
| abstract_inverted_index.feature | 162 |
| abstract_inverted_index.learned | 75, 125, 145 |
| abstract_inverted_index.natural | 23 |
| abstract_inverted_index.network | 95, 103, 155 |
| abstract_inverted_index.precise | 83 |
| abstract_inverted_index.propose | 62 |
| abstract_inverted_index.pyramid | 100, 154 |
| abstract_inverted_index.targets | 141 |
| abstract_inverted_index.thereby | 53 |
| abstract_inverted_index.(CFUNet) | 96 |
| abstract_inverted_index.achieves | 179 |
| abstract_inverted_index.approach | 178 |
| abstract_inverted_index.combined | 129 |
| abstract_inverted_index.compared | 182 |
| abstract_inverted_index.confuses | 48 |
| abstract_inverted_index.consists | 89 |
| abstract_inverted_index.contains | 106 |
| abstract_inverted_index.datasets | 174 |
| abstract_inverted_index.degrades | 54 |
| abstract_inverted_index.guidance | 51, 161 |
| abstract_inverted_index.methods. | 185 |
| abstract_inverted_index.quality. | 57 |
| abstract_inverted_index.reliable | 119 |
| abstract_inverted_index.semantic | 116 |
| abstract_inverted_index.(PEANet). | 104 |
| abstract_inverted_index.Extensive | 167 |
| abstract_inverted_index.attention | 102, 151 |
| abstract_inverted_index.combining | 111 |
| abstract_inverted_index.excellent | 180 |
| abstract_inverted_index.framework | 88 |
| abstract_inverted_index.geometric | 114 |
| abstract_inverted_index.guidance, | 45 |
| abstract_inverted_index.learning. | 122 |
| abstract_inverted_index.mechanism | 133 |
| abstract_inverted_index.settings, | 6 |
| abstract_inverted_index.structure | 36, 65 |
| abstract_inverted_index.synthetic | 5, 172 |
| abstract_inverted_index.distortion | 15 |
| abstract_inverted_index.framework, | 68 |
| abstract_inverted_index.real-world | 26 |
| abstract_inverted_index.structural | 14 |
| abstract_inverted_index.trilateral | 108 |
| abstract_inverted_index.upsampling | 94 |
| abstract_inverted_index.challenging | 9 |
| abstract_inverted_index.degradation | 24 |
| abstract_inverted_index.experiments | 168 |
| abstract_inverted_index.flow-guided | 66, 93 |
| abstract_inverted_index.information | 80 |
| abstract_inverted_index.integrating | 143 |
| abstract_inverted_index.performance | 181 |
| abstract_inverted_index.potentially | 47 |
| abstract_inverted_index.prediction. | 139 |
| abstract_inverted_index.refinement. | 166 |
| abstract_inverted_index.significant | 35 |
| abstract_inverted_index.upsampling. | 85 |
| abstract_inverted_index.correlations | 117 |
| abstract_inverted_index.edge-focused | 160 |
| abstract_inverted_index.transferring | 81 |
| abstract_inverted_index.RGB-structure | 50, 79 |
| abstract_inverted_index.Specifically, | 86 |
| abstract_inverted_index.flow-enhanced | 99 |
| abstract_inverted_index.grid-sampling | 132 |
| abstract_inverted_index.inconsistency | 37 |
| abstract_inverted_index.cross-modality | 71, 92, 120 |
| abstract_inverted_index.hierarchically | 157 |
| abstract_inverted_index.low-resolution | 27 |
| abstract_inverted_index.self-attention | 109 |
| abstract_inverted_index.high-resolution | 136 |
| abstract_inverted_index.state-of-the-art | 184 |
| abstract_inverted_index.super-resolution | 2 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 6 |
| citation_normalized_percentile |