Structure Invariant Transformation for better Adversarial Transferability Article Swipe
YOU?
·
· 2023
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2309.14700
Given the severe vulnerability of Deep Neural Networks (DNNs) against adversarial examples, there is an urgent need for an effective adversarial attack to identify the deficiencies of DNNs in security-sensitive applications. As one of the prevalent black-box adversarial attacks, the existing transfer-based attacks still cannot achieve comparable performance with the white-box attacks. Among these, input transformation based attacks have shown remarkable effectiveness in boosting transferability. In this work, we find that the existing input transformation based attacks transform the input image globally, resulting in limited diversity of the transformed images. We postulate that the more diverse transformed images result in better transferability. Thus, we investigate how to locally apply various transformations onto the input image to improve such diversity while preserving the structure of image. To this end, we propose a novel input transformation based attack, called Structure Invariant Attack (SIA), which applies a random image transformation onto each image block to craft a set of diverse images for gradient calculation. Extensive experiments on the standard ImageNet dataset demonstrate that SIA exhibits much better transferability than the existing SOTA input transformation based attacks on CNN-based and transformer-based models, showing its generality and superiority in boosting transferability. Code is available at https://github.com/xiaosen-wang/SIT.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2309.14700
- https://arxiv.org/pdf/2309.14700
- OA Status
- green
- Cited By
- 5
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4387148101
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4387148101Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2309.14700Digital Object Identifier
- Title
-
Structure Invariant Transformation for better Adversarial TransferabilityWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2023Year of publication
- Publication date
-
2023-09-26Full publication date if available
- Authors
-
Xiaosen Wang, Zeliang Zhang, Jianping ZhangList of authors in order
- Landing page
-
https://arxiv.org/abs/2309.14700Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2309.14700Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2309.14700Direct OA link when available
- Concepts
-
Transferability, Computer science, Adversarial system, Generality, Transformation (genetics), Artificial intelligence, Invariant (physics), Pattern recognition (psychology), Machine learning, Mathematics, Psychotherapist, Psychology, Mathematical physics, Gene, Chemistry, Logit, BiochemistryTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
5Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 3, 2024: 1, 2023: 1Per-year citation counts (last 5 years)
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4387148101 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2309.14700 |
| ids.doi | https://doi.org/10.48550/arxiv.2309.14700 |
| ids.openalex | https://openalex.org/W4387148101 |
| fwci | |
| type | preprint |
| title | Structure Invariant Transformation for better Adversarial Transferability |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T11689 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9980000257492065 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1702 |
| topics[0].subfield.display_name | Artificial Intelligence |
| topics[0].display_name | Adversarial Robustness in Machine Learning |
| topics[1].id | https://openalex.org/T11775 |
| topics[1].field.id | https://openalex.org/fields/27 |
| topics[1].field.display_name | Medicine |
| topics[1].score | 0.9157000184059143 |
| topics[1].domain.id | https://openalex.org/domains/4 |
| topics[1].domain.display_name | Health Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2741 |
| topics[1].subfield.display_name | Radiology, Nuclear Medicine and Imaging |
| topics[1].display_name | COVID-19 diagnosis using AI |
| topics[2].id | https://openalex.org/T14117 |
| topics[2].field.id | https://openalex.org/fields/22 |
| topics[2].field.display_name | Engineering |
| topics[2].score | 0.9106000065803528 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2208 |
| topics[2].subfield.display_name | Electrical and Electronic Engineering |
| topics[2].display_name | Integrated Circuits and Semiconductor Failure Analysis |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C61272859 |
| concepts[0].level | 3 |
| concepts[0].score | 0.7570879459381104 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q7834031 |
| concepts[0].display_name | Transferability |
| concepts[1].id | https://openalex.org/C41008148 |
| concepts[1].level | 0 |
| concepts[1].score | 0.7373178005218506 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[1].display_name | Computer science |
| concepts[2].id | https://openalex.org/C37736160 |
| concepts[2].level | 2 |
| concepts[2].score | 0.6617376208305359 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q1801315 |
| concepts[2].display_name | Adversarial system |
| concepts[3].id | https://openalex.org/C2780767217 |
| concepts[3].level | 2 |
| concepts[3].score | 0.6322593092918396 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q5532421 |
| concepts[3].display_name | Generality |
| concepts[4].id | https://openalex.org/C204241405 |
| concepts[4].level | 3 |
| concepts[4].score | 0.620898425579071 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q461499 |
| concepts[4].display_name | Transformation (genetics) |
| concepts[5].id | https://openalex.org/C154945302 |
| concepts[5].level | 1 |
| concepts[5].score | 0.5674493312835693 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[5].display_name | Artificial intelligence |
| concepts[6].id | https://openalex.org/C190470478 |
| concepts[6].level | 2 |
| concepts[6].score | 0.5121448040008545 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q2370229 |
| concepts[6].display_name | Invariant (physics) |
| concepts[7].id | https://openalex.org/C153180895 |
| concepts[7].level | 2 |
| concepts[7].score | 0.41745656728744507 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[7].display_name | Pattern recognition (psychology) |
| concepts[8].id | https://openalex.org/C119857082 |
| concepts[8].level | 1 |
| concepts[8].score | 0.36024701595306396 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[8].display_name | Machine learning |
| concepts[9].id | https://openalex.org/C33923547 |
| concepts[9].level | 0 |
| concepts[9].score | 0.13879361748695374 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[9].display_name | Mathematics |
| concepts[10].id | https://openalex.org/C542102704 |
| concepts[10].level | 1 |
| concepts[10].score | 0.0 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q183257 |
| concepts[10].display_name | Psychotherapist |
| concepts[11].id | https://openalex.org/C15744967 |
| concepts[11].level | 0 |
| concepts[11].score | 0.0 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q9418 |
| concepts[11].display_name | Psychology |
| concepts[12].id | https://openalex.org/C37914503 |
| concepts[12].level | 1 |
| concepts[12].score | 0.0 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q156495 |
| concepts[12].display_name | Mathematical physics |
| concepts[13].id | https://openalex.org/C104317684 |
| concepts[13].level | 2 |
| concepts[13].score | 0.0 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q7187 |
| concepts[13].display_name | Gene |
| concepts[14].id | https://openalex.org/C185592680 |
| concepts[14].level | 0 |
| concepts[14].score | 0.0 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q2329 |
| concepts[14].display_name | Chemistry |
| concepts[15].id | https://openalex.org/C140331021 |
| concepts[15].level | 2 |
| concepts[15].score | 0.0 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q1868104 |
| concepts[15].display_name | Logit |
| concepts[16].id | https://openalex.org/C55493867 |
| concepts[16].level | 1 |
| concepts[16].score | 0.0 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q7094 |
| concepts[16].display_name | Biochemistry |
| keywords[0].id | https://openalex.org/keywords/transferability |
| keywords[0].score | 0.7570879459381104 |
| keywords[0].display_name | Transferability |
| keywords[1].id | https://openalex.org/keywords/computer-science |
| keywords[1].score | 0.7373178005218506 |
| keywords[1].display_name | Computer science |
| keywords[2].id | https://openalex.org/keywords/adversarial-system |
| keywords[2].score | 0.6617376208305359 |
| keywords[2].display_name | Adversarial system |
| keywords[3].id | https://openalex.org/keywords/generality |
| keywords[3].score | 0.6322593092918396 |
| keywords[3].display_name | Generality |
| keywords[4].id | https://openalex.org/keywords/transformation |
| keywords[4].score | 0.620898425579071 |
| keywords[4].display_name | Transformation (genetics) |
| keywords[5].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[5].score | 0.5674493312835693 |
| keywords[5].display_name | Artificial intelligence |
| keywords[6].id | https://openalex.org/keywords/invariant |
| keywords[6].score | 0.5121448040008545 |
| keywords[6].display_name | Invariant (physics) |
| keywords[7].id | https://openalex.org/keywords/pattern-recognition |
| keywords[7].score | 0.41745656728744507 |
| keywords[7].display_name | Pattern recognition (psychology) |
| keywords[8].id | https://openalex.org/keywords/machine-learning |
| keywords[8].score | 0.36024701595306396 |
| keywords[8].display_name | Machine learning |
| keywords[9].id | https://openalex.org/keywords/mathematics |
| keywords[9].score | 0.13879361748695374 |
| keywords[9].display_name | Mathematics |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2309.14700 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2309.14700 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2309.14700 |
| locations[1].id | doi:10.48550/arxiv.2309.14700 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2309.14700 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5066213938 |
| authorships[0].author.orcid | https://orcid.org/0009-0004-0070-0944 |
| authorships[0].author.display_name | Xiaosen Wang |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Wang, Xiaosen |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5059031640 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-3890-5388 |
| authorships[1].author.display_name | Zeliang Zhang |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Zhang, Zeliang |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5076180260 |
| authorships[2].author.orcid | https://orcid.org/0000-0003-2212-5296 |
| authorships[2].author.display_name | Jianping Zhang |
| authorships[2].author_position | last |
| authorships[2].raw_author_name | Zhang, Jianping |
| authorships[2].is_corresponding | False |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2309.14700 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2023-09-29T00:00:00 |
| display_name | Structure Invariant Transformation for better Adversarial Transferability |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T11689 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9980000257492065 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1702 |
| primary_topic.subfield.display_name | Artificial Intelligence |
| primary_topic.display_name | Adversarial Robustness in Machine Learning |
| related_works | https://openalex.org/W4288055406, https://openalex.org/W4200630034, https://openalex.org/W3137894200, https://openalex.org/W3092178728, https://openalex.org/W4226402597, https://openalex.org/W3132910851, https://openalex.org/W4377864639, https://openalex.org/W4392340763, https://openalex.org/W4283325551, https://openalex.org/W2997056298 |
| cited_by_count | 5 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 3 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 1 |
| counts_by_year[2].year | 2023 |
| counts_by_year[2].cited_by_count | 1 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2309.14700 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2309.14700 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2309.14700 |
| primary_location.id | pmh:oai:arXiv.org:2309.14700 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2309.14700 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2309.14700 |
| publication_date | 2023-09-26 |
| publication_year | 2023 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 130, 143, 153 |
| abstract_inverted_index.As | 31 |
| abstract_inverted_index.In | 65 |
| abstract_inverted_index.To | 125 |
| abstract_inverted_index.We | 90 |
| abstract_inverted_index.an | 14, 18 |
| abstract_inverted_index.at | 199 |
| abstract_inverted_index.in | 28, 62, 83, 99, 193 |
| abstract_inverted_index.is | 13, 197 |
| abstract_inverted_index.of | 4, 26, 33, 86, 123, 155 |
| abstract_inverted_index.on | 163, 183 |
| abstract_inverted_index.to | 22, 106, 115, 151 |
| abstract_inverted_index.we | 68, 103, 128 |
| abstract_inverted_index.SIA | 170 |
| abstract_inverted_index.and | 185, 191 |
| abstract_inverted_index.for | 17, 158 |
| abstract_inverted_index.how | 105 |
| abstract_inverted_index.its | 189 |
| abstract_inverted_index.one | 32 |
| abstract_inverted_index.set | 154 |
| abstract_inverted_index.the | 1, 24, 34, 39, 49, 71, 78, 87, 93, 112, 121, 164, 176 |
| abstract_inverted_index.Code | 196 |
| abstract_inverted_index.DNNs | 27 |
| abstract_inverted_index.Deep | 5 |
| abstract_inverted_index.SOTA | 178 |
| abstract_inverted_index.each | 148 |
| abstract_inverted_index.end, | 127 |
| abstract_inverted_index.find | 69 |
| abstract_inverted_index.have | 58 |
| abstract_inverted_index.more | 94 |
| abstract_inverted_index.much | 172 |
| abstract_inverted_index.need | 16 |
| abstract_inverted_index.onto | 111, 147 |
| abstract_inverted_index.such | 117 |
| abstract_inverted_index.than | 175 |
| abstract_inverted_index.that | 70, 92, 169 |
| abstract_inverted_index.this | 66, 126 |
| abstract_inverted_index.with | 48 |
| abstract_inverted_index.Among | 52 |
| abstract_inverted_index.Given | 0 |
| abstract_inverted_index.Thus, | 102 |
| abstract_inverted_index.apply | 108 |
| abstract_inverted_index.based | 56, 75, 134, 181 |
| abstract_inverted_index.block | 150 |
| abstract_inverted_index.craft | 152 |
| abstract_inverted_index.image | 80, 114, 145, 149 |
| abstract_inverted_index.input | 54, 73, 79, 113, 132, 179 |
| abstract_inverted_index.novel | 131 |
| abstract_inverted_index.shown | 59 |
| abstract_inverted_index.still | 43 |
| abstract_inverted_index.there | 12 |
| abstract_inverted_index.which | 141 |
| abstract_inverted_index.while | 119 |
| abstract_inverted_index.work, | 67 |
| abstract_inverted_index.(DNNs) | 8 |
| abstract_inverted_index.(SIA), | 140 |
| abstract_inverted_index.Attack | 139 |
| abstract_inverted_index.Neural | 6 |
| abstract_inverted_index.attack | 21 |
| abstract_inverted_index.better | 100, 173 |
| abstract_inverted_index.called | 136 |
| abstract_inverted_index.cannot | 44 |
| abstract_inverted_index.image. | 124 |
| abstract_inverted_index.images | 97, 157 |
| abstract_inverted_index.random | 144 |
| abstract_inverted_index.result | 98 |
| abstract_inverted_index.severe | 2 |
| abstract_inverted_index.these, | 53 |
| abstract_inverted_index.urgent | 15 |
| abstract_inverted_index.achieve | 45 |
| abstract_inverted_index.against | 9 |
| abstract_inverted_index.applies | 142 |
| abstract_inverted_index.attack, | 135 |
| abstract_inverted_index.attacks | 42, 57, 76, 182 |
| abstract_inverted_index.dataset | 167 |
| abstract_inverted_index.diverse | 95, 156 |
| abstract_inverted_index.images. | 89 |
| abstract_inverted_index.improve | 116 |
| abstract_inverted_index.limited | 84 |
| abstract_inverted_index.locally | 107 |
| abstract_inverted_index.models, | 187 |
| abstract_inverted_index.propose | 129 |
| abstract_inverted_index.showing | 188 |
| abstract_inverted_index.various | 109 |
| abstract_inverted_index.ImageNet | 166 |
| abstract_inverted_index.Networks | 7 |
| abstract_inverted_index.attacks, | 38 |
| abstract_inverted_index.attacks. | 51 |
| abstract_inverted_index.boosting | 63, 194 |
| abstract_inverted_index.exhibits | 171 |
| abstract_inverted_index.existing | 40, 72, 177 |
| abstract_inverted_index.gradient | 159 |
| abstract_inverted_index.identify | 23 |
| abstract_inverted_index.standard | 165 |
| abstract_inverted_index.CNN-based | 184 |
| abstract_inverted_index.Extensive | 161 |
| abstract_inverted_index.Invariant | 138 |
| abstract_inverted_index.Structure | 137 |
| abstract_inverted_index.available | 198 |
| abstract_inverted_index.black-box | 36 |
| abstract_inverted_index.diversity | 85, 118 |
| abstract_inverted_index.effective | 19 |
| abstract_inverted_index.examples, | 11 |
| abstract_inverted_index.globally, | 81 |
| abstract_inverted_index.postulate | 91 |
| abstract_inverted_index.prevalent | 35 |
| abstract_inverted_index.resulting | 82 |
| abstract_inverted_index.structure | 122 |
| abstract_inverted_index.transform | 77 |
| abstract_inverted_index.white-box | 50 |
| abstract_inverted_index.comparable | 46 |
| abstract_inverted_index.generality | 190 |
| abstract_inverted_index.preserving | 120 |
| abstract_inverted_index.remarkable | 60 |
| abstract_inverted_index.adversarial | 10, 20, 37 |
| abstract_inverted_index.demonstrate | 168 |
| abstract_inverted_index.experiments | 162 |
| abstract_inverted_index.investigate | 104 |
| abstract_inverted_index.performance | 47 |
| abstract_inverted_index.superiority | 192 |
| abstract_inverted_index.transformed | 88, 96 |
| abstract_inverted_index.calculation. | 160 |
| abstract_inverted_index.deficiencies | 25 |
| abstract_inverted_index.applications. | 30 |
| abstract_inverted_index.effectiveness | 61 |
| abstract_inverted_index.vulnerability | 3 |
| abstract_inverted_index.transfer-based | 41 |
| abstract_inverted_index.transformation | 55, 74, 133, 146, 180 |
| abstract_inverted_index.transferability | 174 |
| abstract_inverted_index.transformations | 110 |
| abstract_inverted_index.transferability. | 64, 101, 195 |
| abstract_inverted_index.transformer-based | 186 |
| abstract_inverted_index.security-sensitive | 29 |
| abstract_inverted_index.https://github.com/xiaosen-wang/SIT. | 200 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 3 |
| citation_normalized_percentile |