Structure of Perfect Numbers Article Swipe
This paper proves the nonexistence of odd perfect numbers by revealing the deep structural nature of perfection. We show that perfect numbers are not arithmetic coincidences but arise solely from binary symmetry: two coherent geometric sequences with base 2 that enable finite convergence to unity and restore divisibility through the Mersenne core. Any attempt to construct a perfect number using odd primes or composite factors fails structurally — new divisors disrupt coherence, and the sum of divisors cannot remain aligned with the number’s lattice. Thus, odd perfect numbers are not merely undiscovered; they are fundamentally impossible. All perfect numbers are fully described by the Euclid–Euler formula.
Related Topics
Concepts
Perfect number
Mathematics
Perfect power
Divisibility rule
Mersenne prime
Discrete mathematics
Binary number
Base (topology)
Natural number
Combinatorics
Arithmetic
Sequence (biology)
Square number
Divisor (algebraic geometry)
Existential quantification
Construct (python library)
Pure mathematics
Perfect field
Metadata
- Type
- preprint
- Language
- en
- Landing Page
- https://doi.org/10.5281/zenodo.17850306
- OA Status
- green
- OpenAlex ID
- https://openalex.org/W7110078978
All OpenAlex metadata
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W7110078978Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.5281/zenodo.17850306Digital Object Identifier
- Title
-
Structure of Perfect NumbersWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-12-07Full publication date if available
- Authors
-
Edranov, DenisList of authors in order
- Landing page
-
https://doi.org/10.5281/zenodo.17850306Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.5281/zenodo.17850306Direct OA link when available
- Concepts
-
Perfect number, Mathematics, Perfect power, Divisibility rule, Mersenne prime, Discrete mathematics, Binary number, Base (topology), Natural number, Combinatorics, Arithmetic, Sequence (biology), Square number, Divisor (algebraic geometry), Existential quantification, Construct (python library), Pure mathematics, Perfect fieldTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
Full payload
| id | https://openalex.org/W7110078978 |
|---|---|
| doi | https://doi.org/10.5281/zenodo.17850306 |
| ids.doi | https://doi.org/10.5281/zenodo.17850306 |
| ids.openalex | https://openalex.org/W7110078978 |
| fwci | |
| type | preprint |
| title | Structure of Perfect Numbers |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C103996166 |
| concepts[0].level | 2 |
| concepts[0].score | 0.8672069907188416 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q170043 |
| concepts[0].display_name | Perfect number |
| concepts[1].id | https://openalex.org/C33923547 |
| concepts[1].level | 0 |
| concepts[1].score | 0.7868221998214722 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[1].display_name | Mathematics |
| concepts[2].id | https://openalex.org/C93446932 |
| concepts[2].level | 2 |
| concepts[2].score | 0.7580139636993408 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q1972803 |
| concepts[2].display_name | Perfect power |
| concepts[3].id | https://openalex.org/C9991821 |
| concepts[3].level | 2 |
| concepts[3].score | 0.71038818359375 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q858520 |
| concepts[3].display_name | Divisibility rule |
| concepts[4].id | https://openalex.org/C29641680 |
| concepts[4].level | 2 |
| concepts[4].score | 0.5166283249855042 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q186875 |
| concepts[4].display_name | Mersenne prime |
| concepts[5].id | https://openalex.org/C118615104 |
| concepts[5].level | 1 |
| concepts[5].score | 0.46081557869911194 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q121416 |
| concepts[5].display_name | Discrete mathematics |
| concepts[6].id | https://openalex.org/C48372109 |
| concepts[6].level | 2 |
| concepts[6].score | 0.4495169520378113 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q3913 |
| concepts[6].display_name | Binary number |
| concepts[7].id | https://openalex.org/C42058472 |
| concepts[7].level | 2 |
| concepts[7].score | 0.44900280237197876 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q810214 |
| concepts[7].display_name | Base (topology) |
| concepts[8].id | https://openalex.org/C184264201 |
| concepts[8].level | 2 |
| concepts[8].score | 0.4184030294418335 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q21199 |
| concepts[8].display_name | Natural number |
| concepts[9].id | https://openalex.org/C114614502 |
| concepts[9].level | 1 |
| concepts[9].score | 0.40544959902763367 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q76592 |
| concepts[9].display_name | Combinatorics |
| concepts[10].id | https://openalex.org/C94375191 |
| concepts[10].level | 1 |
| concepts[10].score | 0.38385009765625 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q11205 |
| concepts[10].display_name | Arithmetic |
| concepts[11].id | https://openalex.org/C2778112365 |
| concepts[11].level | 2 |
| concepts[11].score | 0.3800823390483856 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q3511065 |
| concepts[11].display_name | Sequence (biology) |
| concepts[12].id | https://openalex.org/C173808221 |
| concepts[12].level | 2 |
| concepts[12].score | 0.33319568634033203 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q50705 |
| concepts[12].display_name | Square number |
| concepts[13].id | https://openalex.org/C203492994 |
| concepts[13].level | 2 |
| concepts[13].score | 0.3072400987148285 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q909669 |
| concepts[13].display_name | Divisor (algebraic geometry) |
| concepts[14].id | https://openalex.org/C136979486 |
| concepts[14].level | 2 |
| concepts[14].score | 0.30367475748062134 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q773483 |
| concepts[14].display_name | Existential quantification |
| concepts[15].id | https://openalex.org/C2780801425 |
| concepts[15].level | 2 |
| concepts[15].score | 0.2806115746498108 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q5164392 |
| concepts[15].display_name | Construct (python library) |
| concepts[16].id | https://openalex.org/C202444582 |
| concepts[16].level | 1 |
| concepts[16].score | 0.27900856733322144 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q837863 |
| concepts[16].display_name | Pure mathematics |
| concepts[17].id | https://openalex.org/C133975322 |
| concepts[17].level | 2 |
| concepts[17].score | 0.2588651776313782 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q2997817 |
| concepts[17].display_name | Perfect field |
| keywords[0].id | https://openalex.org/keywords/perfect-number |
| keywords[0].score | 0.8672069907188416 |
| keywords[0].display_name | Perfect number |
| keywords[1].id | https://openalex.org/keywords/perfect-power |
| keywords[1].score | 0.7580139636993408 |
| keywords[1].display_name | Perfect power |
| keywords[2].id | https://openalex.org/keywords/divisibility-rule |
| keywords[2].score | 0.71038818359375 |
| keywords[2].display_name | Divisibility rule |
| keywords[3].id | https://openalex.org/keywords/mersenne-prime |
| keywords[3].score | 0.5166283249855042 |
| keywords[3].display_name | Mersenne prime |
| keywords[4].id | https://openalex.org/keywords/binary-number |
| keywords[4].score | 0.4495169520378113 |
| keywords[4].display_name | Binary number |
| keywords[5].id | https://openalex.org/keywords/base |
| keywords[5].score | 0.44900280237197876 |
| keywords[5].display_name | Base (topology) |
| keywords[6].id | https://openalex.org/keywords/natural-number |
| keywords[6].score | 0.4184030294418335 |
| keywords[6].display_name | Natural number |
| language | en |
| locations[0].id | doi:10.5281/zenodo.17850306 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400562 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | Zenodo (CERN European Organization for Nuclear Research) |
| locations[0].source.host_organization | https://openalex.org/I67311998 |
| locations[0].source.host_organization_name | European Organization for Nuclear Research |
| locations[0].source.host_organization_lineage | https://openalex.org/I67311998 |
| locations[0].license | cc-by |
| locations[0].pdf_url | |
| locations[0].version | |
| locations[0].raw_type | article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | False |
| locations[0].is_published | |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | https://doi.org/10.5281/zenodo.17850306 |
| indexed_in | datacite |
| authorships[0].author.id | |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Edranov, Denis |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Edranov, Denis |
| authorships[0].is_corresponding | True |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.5281/zenodo.17850306 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-12-08T00:00:00 |
| display_name | Structure of Perfect Numbers |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-12-08T23:26:33.048892 |
| primary_topic | |
| cited_by_count | 0 |
| locations_count | 1 |
| best_oa_location.id | doi:10.5281/zenodo.17850306 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400562 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | Zenodo (CERN European Organization for Nuclear Research) |
| best_oa_location.source.host_organization | https://openalex.org/I67311998 |
| best_oa_location.source.host_organization_name | European Organization for Nuclear Research |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I67311998 |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | |
| best_oa_location.version | |
| best_oa_location.raw_type | article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | https://doi.org/10.5281/zenodo.17850306 |
| primary_location.id | doi:10.5281/zenodo.17850306 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400562 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | Zenodo (CERN European Organization for Nuclear Research) |
| primary_location.source.host_organization | https://openalex.org/I67311998 |
| primary_location.source.host_organization_name | European Organization for Nuclear Research |
| primary_location.source.host_organization_lineage | https://openalex.org/I67311998 |
| primary_location.license | cc-by |
| primary_location.pdf_url | |
| primary_location.version | |
| primary_location.raw_type | article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | https://doi.org/10.5281/zenodo.17850306 |
| publication_date | 2025-12-07 |
| publication_year | 2025 |
| referenced_works_count | 0 |
| abstract_inverted_index.2 | 38 |
| abstract_inverted_index.a | 56 |
| abstract_inverted_index.We | 17 |
| abstract_inverted_index.by | 9, 102 |
| abstract_inverted_index.of | 5, 15, 75 |
| abstract_inverted_index.or | 62 |
| abstract_inverted_index.to | 43, 54 |
| abstract_inverted_index.All | 96 |
| abstract_inverted_index.Any | 52 |
| abstract_inverted_index.and | 45, 72 |
| abstract_inverted_index.are | 22, 88, 93, 99 |
| abstract_inverted_index.but | 26 |
| abstract_inverted_index.new | 68 |
| abstract_inverted_index.not | 23, 89 |
| abstract_inverted_index.odd | 6, 60, 85 |
| abstract_inverted_index.sum | 74 |
| abstract_inverted_index.the | 3, 11, 49, 73, 81, 103 |
| abstract_inverted_index.two | 32 |
| abstract_inverted_index.— | 67 |
| abstract_inverted_index.This | 0 |
| abstract_inverted_index.base | 37 |
| abstract_inverted_index.deep | 12 |
| abstract_inverted_index.from | 29 |
| abstract_inverted_index.show | 18 |
| abstract_inverted_index.that | 19, 39 |
| abstract_inverted_index.they | 92 |
| abstract_inverted_index.with | 36, 80 |
| abstract_inverted_index.Thus, | 84 |
| abstract_inverted_index.arise | 27 |
| abstract_inverted_index.core. | 51 |
| abstract_inverted_index.fails | 65 |
| abstract_inverted_index.fully | 100 |
| abstract_inverted_index.paper | 1 |
| abstract_inverted_index.unity | 44 |
| abstract_inverted_index.using | 59 |
| abstract_inverted_index.binary | 30 |
| abstract_inverted_index.cannot | 77 |
| abstract_inverted_index.enable | 40 |
| abstract_inverted_index.finite | 41 |
| abstract_inverted_index.merely | 90 |
| abstract_inverted_index.nature | 14 |
| abstract_inverted_index.number | 58 |
| abstract_inverted_index.primes | 61 |
| abstract_inverted_index.proves | 2 |
| abstract_inverted_index.remain | 78 |
| abstract_inverted_index.solely | 28 |
| abstract_inverted_index.aligned | 79 |
| abstract_inverted_index.attempt | 53 |
| abstract_inverted_index.disrupt | 70 |
| abstract_inverted_index.factors | 64 |
| abstract_inverted_index.numbers | 8, 21, 87, 98 |
| abstract_inverted_index.perfect | 7, 20, 57, 86, 97 |
| abstract_inverted_index.restore | 46 |
| abstract_inverted_index.through | 48 |
| abstract_inverted_index.Mersenne | 50 |
| abstract_inverted_index.coherent | 33 |
| abstract_inverted_index.divisors | 69, 76 |
| abstract_inverted_index.formula. | 105 |
| abstract_inverted_index.lattice. | 83 |
| abstract_inverted_index.composite | 63 |
| abstract_inverted_index.construct | 55 |
| abstract_inverted_index.described | 101 |
| abstract_inverted_index.geometric | 34 |
| abstract_inverted_index.revealing | 10 |
| abstract_inverted_index.sequences | 35 |
| abstract_inverted_index.symmetry: | 31 |
| abstract_inverted_index.arithmetic | 24 |
| abstract_inverted_index.coherence, | 71 |
| abstract_inverted_index.number’s | 82 |
| abstract_inverted_index.structural | 13 |
| abstract_inverted_index.convergence | 42 |
| abstract_inverted_index.impossible. | 95 |
| abstract_inverted_index.perfection. | 16 |
| abstract_inverted_index.coincidences | 25 |
| abstract_inverted_index.divisibility | 47 |
| abstract_inverted_index.nonexistence | 4 |
| abstract_inverted_index.structurally | 66 |
| abstract_inverted_index.fundamentally | 94 |
| abstract_inverted_index.undiscovered; | 91 |
| abstract_inverted_index.Euclid–Euler | 104 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 1 |
| citation_normalized_percentile |