Structure-prior Informed Diffusion Model for Graph Source Localization with Limited Data Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.1145/3746252.3761146
Source localization in graph information propagation is essential for mitigating network disruptions, including misinformation spread, cyber threats, and infrastructure failures. Existing deep generative approaches face significant challenges in real-world applications due to limited propagation data availability. We present SIDSL (\textbf{S}tructure-prior \textbf{I}nformed \textbf{D}iffusion model for \textbf{S}ource \textbf{L}ocalization), a generative diffusion framework that leverages topology-aware priors to enable robust source localization with limited data. SIDSL addresses three key challenges: unknown propagation patterns through structure-based source estimations via graph label propagation, complex topology-propagation relationships via a propagation-enhanced conditional denoiser with GNN-parameterized label propagation module, and class imbalance through structure-prior biased diffusion initialization. By learning pattern-invariant features from synthetic data generated by established propagation models, SIDSL enables effective knowledge transfer to real-world scenarios. Experimental evaluation on four real-world datasets demonstrates superior performance with 7.5-13.3\% F1 score improvements over baselines, including over 19\% improvement in few-shot and 40\% in zero-shot settings, validating the framework's effectiveness for practical source localization. Our code can be found \href{https://github.com/tsinghua-fib-lab/SIDSL}{here}.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- https://doi.org/10.1145/3746252.3761146
- OA Status
- gold
- OpenAlex ID
- https://openalex.org/W4415251290
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4415251290Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1145/3746252.3761146Digital Object Identifier
- Title
-
Structure-prior Informed Diffusion Model for Graph Source Localization with Limited DataWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-11-08Full publication date if available
- Authors
-
Hongyi Chen, Jingtao Ding, Xiaojun Liang, Yongbo Li, Xiao–Ping ZhangList of authors in order
- Landing page
-
https://doi.org/10.1145/3746252.3761146Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.1145/3746252.3761146Direct OA link when available
- Cited by
-
0Total citation count in OpenAlex
Full payload
| id | https://openalex.org/W4415251290 |
|---|---|
| doi | https://doi.org/10.1145/3746252.3761146 |
| ids.doi | https://doi.org/10.1145/3746252.3761146 |
| ids.openalex | https://openalex.org/W4415251290 |
| fwci | 0.0 |
| type | preprint |
| title | Structure-prior Informed Diffusion Model for Graph Source Localization with Limited Data |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | 259 |
| biblio.first_page | 250 |
| topics[0].id | https://openalex.org/T11273 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.957099974155426 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1702 |
| topics[0].subfield.display_name | Artificial Intelligence |
| topics[0].display_name | Advanced Graph Neural Networks |
| topics[1].id | https://openalex.org/T11307 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9311000108718872 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1702 |
| topics[1].subfield.display_name | Artificial Intelligence |
| topics[1].display_name | Domain Adaptation and Few-Shot Learning |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| language | en |
| locations[0].id | doi:10.1145/3746252.3761146 |
| locations[0].is_oa | True |
| locations[0].source | |
| locations[0].license | cc-by-nc-sa |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | proceedings-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by-nc-sa |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Proceedings of the 34th ACM International Conference on Information and Knowledge Management |
| locations[0].landing_page_url | https://doi.org/10.1145/3746252.3761146 |
| locations[1].id | pmh:oai:arXiv.org:2502.17928 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | https://arxiv.org/pdf/2502.17928 |
| locations[1].version | submittedVersion |
| locations[1].raw_type | text |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | http://arxiv.org/abs/2502.17928 |
| indexed_in | arxiv, crossref |
| authorships[0].author.id | https://openalex.org/A5100428551 |
| authorships[0].author.orcid | https://orcid.org/0009-0008-0777-3942 |
| authorships[0].author.display_name | Hongyi Chen |
| authorships[0].countries | CN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I99065089 |
| authorships[0].affiliations[0].raw_affiliation_string | Shenzhen Key Laboratory of Ubiquitous Data Enabling, Shenzhen International Graduate School, Tsinghua University, Shenzhen, China and Pengcheng Laboratory, Shenzhen, China |
| authorships[0].institutions[0].id | https://openalex.org/I99065089 |
| authorships[0].institutions[0].ror | https://ror.org/03cve4549 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I99065089 |
| authorships[0].institutions[0].country_code | CN |
| authorships[0].institutions[0].display_name | Tsinghua University |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Hongyi Chen |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Shenzhen Key Laboratory of Ubiquitous Data Enabling, Shenzhen International Graduate School, Tsinghua University, Shenzhen, China and Pengcheng Laboratory, Shenzhen, China |
| authorships[1].author.id | https://openalex.org/A5101809174 |
| authorships[1].author.orcid | https://orcid.org/0000-0003-1487-3470 |
| authorships[1].author.display_name | Jingtao Ding |
| authorships[1].countries | CN |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I99065089 |
| authorships[1].affiliations[0].raw_affiliation_string | Department of Electronic Engineering, Tsinghua University, Beijing, China |
| authorships[1].institutions[0].id | https://openalex.org/I99065089 |
| authorships[1].institutions[0].ror | https://ror.org/03cve4549 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I99065089 |
| authorships[1].institutions[0].country_code | CN |
| authorships[1].institutions[0].display_name | Tsinghua University |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Jingtao Ding |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Department of Electronic Engineering, Tsinghua University, Beijing, China |
| authorships[2].author.id | https://openalex.org/A5030000317 |
| authorships[2].author.orcid | https://orcid.org/0000-0003-1712-7983 |
| authorships[2].author.display_name | Xiaojun Liang |
| authorships[2].countries | CN |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I4210136793 |
| authorships[2].affiliations[0].raw_affiliation_string | Pengcheng Laboratory, Shenzhen, China |
| authorships[2].institutions[0].id | https://openalex.org/I4210136793 |
| authorships[2].institutions[0].ror | https://ror.org/03qdqbt06 |
| authorships[2].institutions[0].type | facility |
| authorships[2].institutions[0].lineage | https://openalex.org/I4210136793 |
| authorships[2].institutions[0].country_code | CN |
| authorships[2].institutions[0].display_name | Peng Cheng Laboratory |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Xiaojun Liang |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Pengcheng Laboratory, Shenzhen, China |
| authorships[3].author.id | https://openalex.org/A5100665121 |
| authorships[3].author.orcid | https://orcid.org/0000-0003-2699-9951 |
| authorships[3].author.display_name | Yongbo Li |
| authorships[3].countries | CN |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I99065089 |
| authorships[3].affiliations[0].raw_affiliation_string | Department of Electronic Engineering, Tsinghua University, Beijing, China |
| authorships[3].institutions[0].id | https://openalex.org/I99065089 |
| authorships[3].institutions[0].ror | https://ror.org/03cve4549 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I99065089 |
| authorships[3].institutions[0].country_code | CN |
| authorships[3].institutions[0].display_name | Tsinghua University |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Yong Li |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Department of Electronic Engineering, Tsinghua University, Beijing, China |
| authorships[4].author.id | https://openalex.org/A5100363146 |
| authorships[4].author.orcid | https://orcid.org/0000-0001-5241-0069 |
| authorships[4].author.display_name | Xiao–Ping Zhang |
| authorships[4].countries | CN |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I3131625388, https://openalex.org/I99065089 |
| authorships[4].affiliations[0].raw_affiliation_string | Shenzhen Key Laboratory of Ubiquitous Data Enabling, Shenzhen International Graduate School, Tsinghua University, Shenzhen, China |
| authorships[4].institutions[0].id | https://openalex.org/I99065089 |
| authorships[4].institutions[0].ror | https://ror.org/03cve4549 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I99065089 |
| authorships[4].institutions[0].country_code | CN |
| authorships[4].institutions[0].display_name | Tsinghua University |
| authorships[4].institutions[1].id | https://openalex.org/I3131625388 |
| authorships[4].institutions[1].ror | https://ror.org/05f5j6225 |
| authorships[4].institutions[1].type | education |
| authorships[4].institutions[1].lineage | https://openalex.org/I3131625388 |
| authorships[4].institutions[1].country_code | CN |
| authorships[4].institutions[1].display_name | University Town of Shenzhen |
| authorships[4].author_position | last |
| authorships[4].raw_author_name | Zhang, Xiao-Ping |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | Shenzhen Key Laboratory of Ubiquitous Data Enabling, Shenzhen International Graduate School, Tsinghua University, Shenzhen, China |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.1145/3746252.3761146 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-16T00:00:00 |
| display_name | Structure-prior Informed Diffusion Model for Graph Source Localization with Limited Data |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-09T23:09:16.995542 |
| primary_topic.id | https://openalex.org/T11273 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.957099974155426 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1702 |
| primary_topic.subfield.display_name | Artificial Intelligence |
| primary_topic.display_name | Advanced Graph Neural Networks |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | doi:10.1145/3746252.3761146 |
| best_oa_location.is_oa | True |
| best_oa_location.source | |
| best_oa_location.license | cc-by-nc-sa |
| best_oa_location.pdf_url | |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | proceedings-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by-nc-sa |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Proceedings of the 34th ACM International Conference on Information and Knowledge Management |
| best_oa_location.landing_page_url | https://doi.org/10.1145/3746252.3761146 |
| primary_location.id | doi:10.1145/3746252.3761146 |
| primary_location.is_oa | True |
| primary_location.source | |
| primary_location.license | cc-by-nc-sa |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | proceedings-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by-nc-sa |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Proceedings of the 34th ACM International Conference on Information and Knowledge Management |
| primary_location.landing_page_url | https://doi.org/10.1145/3746252.3761146 |
| publication_date | 2025-11-08 |
| publication_year | 2025 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 46, 82 |
| abstract_inverted_index.By | 99 |
| abstract_inverted_index.F1 | 130 |
| abstract_inverted_index.We | 36 |
| abstract_inverted_index.be | 157 |
| abstract_inverted_index.by | 107 |
| abstract_inverted_index.in | 2, 27, 139, 143 |
| abstract_inverted_index.is | 6 |
| abstract_inverted_index.on | 121 |
| abstract_inverted_index.to | 31, 54, 116 |
| abstract_inverted_index.Our | 154 |
| abstract_inverted_index.and | 17, 91, 141 |
| abstract_inverted_index.can | 156 |
| abstract_inverted_index.due | 30 |
| abstract_inverted_index.for | 8, 43, 150 |
| abstract_inverted_index.key | 65 |
| abstract_inverted_index.the | 147 |
| abstract_inverted_index.via | 74, 81 |
| abstract_inverted_index.19\% | 137 |
| abstract_inverted_index.40\% | 142 |
| abstract_inverted_index.code | 155 |
| abstract_inverted_index.data | 34, 105 |
| abstract_inverted_index.deep | 21 |
| abstract_inverted_index.face | 24 |
| abstract_inverted_index.four | 122 |
| abstract_inverted_index.from | 103 |
| abstract_inverted_index.over | 133, 136 |
| abstract_inverted_index.that | 50 |
| abstract_inverted_index.with | 59, 86, 128 |
| abstract_inverted_index.SIDSL | 38, 62, 111 |
| abstract_inverted_index.class | 92 |
| abstract_inverted_index.cyber | 15 |
| abstract_inverted_index.data. | 61 |
| abstract_inverted_index.found | 158 |
| abstract_inverted_index.graph | 3, 75 |
| abstract_inverted_index.label | 76, 88 |
| abstract_inverted_index.model | 42 |
| abstract_inverted_index.score | 131 |
| abstract_inverted_index.three | 64 |
| abstract_inverted_index.Source | 0 |
| abstract_inverted_index.biased | 96 |
| abstract_inverted_index.enable | 55 |
| abstract_inverted_index.priors | 53 |
| abstract_inverted_index.robust | 56 |
| abstract_inverted_index.source | 57, 72, 152 |
| abstract_inverted_index.complex | 78 |
| abstract_inverted_index.enables | 112 |
| abstract_inverted_index.limited | 32, 60 |
| abstract_inverted_index.models, | 110 |
| abstract_inverted_index.module, | 90 |
| abstract_inverted_index.network | 10 |
| abstract_inverted_index.present | 37 |
| abstract_inverted_index.spread, | 14 |
| abstract_inverted_index.through | 70, 94 |
| abstract_inverted_index.unknown | 67 |
| abstract_inverted_index.Existing | 20 |
| abstract_inverted_index.datasets | 124 |
| abstract_inverted_index.denoiser | 85 |
| abstract_inverted_index.features | 102 |
| abstract_inverted_index.few-shot | 140 |
| abstract_inverted_index.learning | 100 |
| abstract_inverted_index.patterns | 69 |
| abstract_inverted_index.superior | 126 |
| abstract_inverted_index.threats, | 16 |
| abstract_inverted_index.transfer | 115 |
| abstract_inverted_index.addresses | 63 |
| abstract_inverted_index.diffusion | 48, 97 |
| abstract_inverted_index.effective | 113 |
| abstract_inverted_index.essential | 7 |
| abstract_inverted_index.failures. | 19 |
| abstract_inverted_index.framework | 49 |
| abstract_inverted_index.generated | 106 |
| abstract_inverted_index.imbalance | 93 |
| abstract_inverted_index.including | 12, 135 |
| abstract_inverted_index.knowledge | 114 |
| abstract_inverted_index.leverages | 51 |
| abstract_inverted_index.practical | 151 |
| abstract_inverted_index.settings, | 145 |
| abstract_inverted_index.synthetic | 104 |
| abstract_inverted_index.zero-shot | 144 |
| abstract_inverted_index.7.5-13.3\% | 129 |
| abstract_inverted_index.approaches | 23 |
| abstract_inverted_index.baselines, | 134 |
| abstract_inverted_index.challenges | 26 |
| abstract_inverted_index.evaluation | 120 |
| abstract_inverted_index.generative | 22, 47 |
| abstract_inverted_index.mitigating | 9 |
| abstract_inverted_index.real-world | 28, 117, 123 |
| abstract_inverted_index.scenarios. | 118 |
| abstract_inverted_index.validating | 146 |
| abstract_inverted_index.challenges: | 66 |
| abstract_inverted_index.conditional | 84 |
| abstract_inverted_index.established | 108 |
| abstract_inverted_index.estimations | 73 |
| abstract_inverted_index.framework's | 148 |
| abstract_inverted_index.improvement | 138 |
| abstract_inverted_index.information | 4 |
| abstract_inverted_index.performance | 127 |
| abstract_inverted_index.propagation | 5, 33, 68, 89, 109 |
| abstract_inverted_index.significant | 25 |
| abstract_inverted_index.Experimental | 119 |
| abstract_inverted_index.applications | 29 |
| abstract_inverted_index.demonstrates | 125 |
| abstract_inverted_index.disruptions, | 11 |
| abstract_inverted_index.improvements | 132 |
| abstract_inverted_index.localization | 1, 58 |
| abstract_inverted_index.propagation, | 77 |
| abstract_inverted_index.availability. | 35 |
| abstract_inverted_index.effectiveness | 149 |
| abstract_inverted_index.localization. | 153 |
| abstract_inverted_index.relationships | 80 |
| abstract_inverted_index.infrastructure | 18 |
| abstract_inverted_index.misinformation | 13 |
| abstract_inverted_index.topology-aware | 52 |
| abstract_inverted_index.\textbf{S}ource | 44 |
| abstract_inverted_index.initialization. | 98 |
| abstract_inverted_index.structure-based | 71 |
| abstract_inverted_index.structure-prior | 95 |
| abstract_inverted_index.GNN-parameterized | 87 |
| abstract_inverted_index.\textbf{I}nformed | 40 |
| abstract_inverted_index.pattern-invariant | 101 |
| abstract_inverted_index.\textbf{D}iffusion | 41 |
| abstract_inverted_index.propagation-enhanced | 83 |
| abstract_inverted_index.topology-propagation | 79 |
| abstract_inverted_index.\textbf{L}ocalization), | 45 |
| abstract_inverted_index.(\textbf{S}tructure-prior | 39 |
| abstract_inverted_index.\href{https://github.com/tsinghua-fib-lab/SIDSL}{here}. | 159 |
| cited_by_percentile_year | |
| countries_distinct_count | 1 |
| institutions_distinct_count | 5 |
| citation_normalized_percentile.value | 0.22380901 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |