Study of CNN deep learning model for temporal remote sensing data processing to map rabi crops Article Swipe
YOU?
·
· 2022
· Open Access
·
· DOI: https://doi.org/10.58825/jog.2022.16.2.46
Convolution Neural Network (CNN) is a deep learning approach that has become an area of interest to the researchers for solving complex problems. With the evaluation of CNN, extraction of deep features for accurate classification of remotely sensed images has gained lot of momentum. This research work uses CNN deep learning model for mapping rabi crops (mustard and wheat) using temporal remote sensing data. The mappings of mustard and wheat crops have been conducted using multispectral temporal images obtained from Sentinel 2A/2B between the dates 1st Nov 2019 and 24th Feb 2020 of Banasthali, Rajasthan region. The CNN model created in this research work uses several layers along with 5 activation functions (relu, sigmoid, tanh, elu and selu) for finding out which activation function gave the best result for the proposed study. Batch size has been examined from 1 to 50 in the multiple of 5 and epochs have been tested from 1 to 10 for a training data of 200 samples for each class. The optimal value with a batch size of 5 and epochs of 30 has been calculated as best suited in this study as the accuracy was getting constant. The implementation of CNN model for classification shows better results as compared to the traditional approach as the CNN algorithms are learning algorithms. This also helps in handling the heterogeneity within a class. A comparison has been conducted using Modified Possibilistic c-Means (MPCM) fuzzy algorithm for the classification of the same set of classes. F-Score, Kappa and Overall Accuracy have been calculated to show how the proposed approach has been outperformed and the level of classification accuracy achieved.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.58825/jog.2022.16.2.46
- https://onlinejog.org/index.php/journal_of_geomatics/article/download/46/8
- OA Status
- diamond
- Cited By
- 1
- References
- 30
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4319603045
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4319603045Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.58825/jog.2022.16.2.46Digital Object Identifier
- Title
-
Study of CNN deep learning model for temporal remote sensing data processing to map rabi cropsWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2022Year of publication
- Publication date
-
2022-10-31Full publication date if available
- Authors
-
Mragank Snighal, Ashish Payal, Anil KumarList of authors in order
- Landing page
-
https://doi.org/10.58825/jog.2022.16.2.46Publisher landing page
- PDF URL
-
https://onlinejog.org/index.php/journal_of_geomatics/article/download/46/8Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
diamondOpen access status per OpenAlex
- OA URL
-
https://onlinejog.org/index.php/journal_of_geomatics/article/download/46/8Direct OA link when available
- Concepts
-
Convolutional neural network, Computer science, Deep learning, Artificial intelligence, Sigmoid function, Convolution (computer science), Pattern recognition (psychology), Multispectral image, Artificial neural network, Class (philosophy), Function (biology), Set (abstract data type), Activation function, Machine learning, Data mining, Evolutionary biology, Biology, Programming languageTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
1Total citation count in OpenAlex
- Citations by year (recent)
-
2023: 1Per-year citation counts (last 5 years)
- References (count)
-
30Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4319603045 |
|---|---|
| doi | https://doi.org/10.58825/jog.2022.16.2.46 |
| ids.doi | https://doi.org/10.58825/jog.2022.16.2.46 |
| ids.openalex | https://openalex.org/W4319603045 |
| fwci | 0.17770135 |
| type | article |
| title | Study of CNN deep learning model for temporal remote sensing data processing to map rabi crops |
| biblio.issue | 2 |
| biblio.volume | 16 |
| biblio.last_page | 175 |
| biblio.first_page | 167 |
| topics[0].id | https://openalex.org/T10616 |
| topics[0].field.id | https://openalex.org/fields/11 |
| topics[0].field.display_name | Agricultural and Biological Sciences |
| topics[0].score | 0.963100016117096 |
| topics[0].domain.id | https://openalex.org/domains/1 |
| topics[0].domain.display_name | Life Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1110 |
| topics[0].subfield.display_name | Plant Science |
| topics[0].display_name | Smart Agriculture and AI |
| topics[1].id | https://openalex.org/T10640 |
| topics[1].field.id | https://openalex.org/fields/16 |
| topics[1].field.display_name | Chemistry |
| topics[1].score | 0.9609000086784363 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1602 |
| topics[1].subfield.display_name | Analytical Chemistry |
| topics[1].display_name | Spectroscopy and Chemometric Analyses |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C81363708 |
| concepts[0].level | 2 |
| concepts[0].score | 0.7418472170829773 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q17084460 |
| concepts[0].display_name | Convolutional neural network |
| concepts[1].id | https://openalex.org/C41008148 |
| concepts[1].level | 0 |
| concepts[1].score | 0.6914629936218262 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[1].display_name | Computer science |
| concepts[2].id | https://openalex.org/C108583219 |
| concepts[2].level | 2 |
| concepts[2].score | 0.6790571212768555 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q197536 |
| concepts[2].display_name | Deep learning |
| concepts[3].id | https://openalex.org/C154945302 |
| concepts[3].level | 1 |
| concepts[3].score | 0.6443958282470703 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[3].display_name | Artificial intelligence |
| concepts[4].id | https://openalex.org/C81388566 |
| concepts[4].level | 3 |
| concepts[4].score | 0.5560160875320435 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q526668 |
| concepts[4].display_name | Sigmoid function |
| concepts[5].id | https://openalex.org/C45347329 |
| concepts[5].level | 3 |
| concepts[5].score | 0.5251621603965759 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q5166604 |
| concepts[5].display_name | Convolution (computer science) |
| concepts[6].id | https://openalex.org/C153180895 |
| concepts[6].level | 2 |
| concepts[6].score | 0.4853929281234741 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[6].display_name | Pattern recognition (psychology) |
| concepts[7].id | https://openalex.org/C173163844 |
| concepts[7].level | 2 |
| concepts[7].score | 0.4798528552055359 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q1761440 |
| concepts[7].display_name | Multispectral image |
| concepts[8].id | https://openalex.org/C50644808 |
| concepts[8].level | 2 |
| concepts[8].score | 0.4729818105697632 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q192776 |
| concepts[8].display_name | Artificial neural network |
| concepts[9].id | https://openalex.org/C2777212361 |
| concepts[9].level | 2 |
| concepts[9].score | 0.45815029740333557 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q5127848 |
| concepts[9].display_name | Class (philosophy) |
| concepts[10].id | https://openalex.org/C14036430 |
| concepts[10].level | 2 |
| concepts[10].score | 0.43994659185409546 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q3736076 |
| concepts[10].display_name | Function (biology) |
| concepts[11].id | https://openalex.org/C177264268 |
| concepts[11].level | 2 |
| concepts[11].score | 0.4259818196296692 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q1514741 |
| concepts[11].display_name | Set (abstract data type) |
| concepts[12].id | https://openalex.org/C38365724 |
| concepts[12].level | 3 |
| concepts[12].score | 0.41965073347091675 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q4677469 |
| concepts[12].display_name | Activation function |
| concepts[13].id | https://openalex.org/C119857082 |
| concepts[13].level | 1 |
| concepts[13].score | 0.3466179668903351 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[13].display_name | Machine learning |
| concepts[14].id | https://openalex.org/C124101348 |
| concepts[14].level | 1 |
| concepts[14].score | 0.3326236605644226 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q172491 |
| concepts[14].display_name | Data mining |
| concepts[15].id | https://openalex.org/C78458016 |
| concepts[15].level | 1 |
| concepts[15].score | 0.0 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q840400 |
| concepts[15].display_name | Evolutionary biology |
| concepts[16].id | https://openalex.org/C86803240 |
| concepts[16].level | 0 |
| concepts[16].score | 0.0 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q420 |
| concepts[16].display_name | Biology |
| concepts[17].id | https://openalex.org/C199360897 |
| concepts[17].level | 1 |
| concepts[17].score | 0.0 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q9143 |
| concepts[17].display_name | Programming language |
| keywords[0].id | https://openalex.org/keywords/convolutional-neural-network |
| keywords[0].score | 0.7418472170829773 |
| keywords[0].display_name | Convolutional neural network |
| keywords[1].id | https://openalex.org/keywords/computer-science |
| keywords[1].score | 0.6914629936218262 |
| keywords[1].display_name | Computer science |
| keywords[2].id | https://openalex.org/keywords/deep-learning |
| keywords[2].score | 0.6790571212768555 |
| keywords[2].display_name | Deep learning |
| keywords[3].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[3].score | 0.6443958282470703 |
| keywords[3].display_name | Artificial intelligence |
| keywords[4].id | https://openalex.org/keywords/sigmoid-function |
| keywords[4].score | 0.5560160875320435 |
| keywords[4].display_name | Sigmoid function |
| keywords[5].id | https://openalex.org/keywords/convolution |
| keywords[5].score | 0.5251621603965759 |
| keywords[5].display_name | Convolution (computer science) |
| keywords[6].id | https://openalex.org/keywords/pattern-recognition |
| keywords[6].score | 0.4853929281234741 |
| keywords[6].display_name | Pattern recognition (psychology) |
| keywords[7].id | https://openalex.org/keywords/multispectral-image |
| keywords[7].score | 0.4798528552055359 |
| keywords[7].display_name | Multispectral image |
| keywords[8].id | https://openalex.org/keywords/artificial-neural-network |
| keywords[8].score | 0.4729818105697632 |
| keywords[8].display_name | Artificial neural network |
| keywords[9].id | https://openalex.org/keywords/class |
| keywords[9].score | 0.45815029740333557 |
| keywords[9].display_name | Class (philosophy) |
| keywords[10].id | https://openalex.org/keywords/function |
| keywords[10].score | 0.43994659185409546 |
| keywords[10].display_name | Function (biology) |
| keywords[11].id | https://openalex.org/keywords/set |
| keywords[11].score | 0.4259818196296692 |
| keywords[11].display_name | Set (abstract data type) |
| keywords[12].id | https://openalex.org/keywords/activation-function |
| keywords[12].score | 0.41965073347091675 |
| keywords[12].display_name | Activation function |
| keywords[13].id | https://openalex.org/keywords/machine-learning |
| keywords[13].score | 0.3466179668903351 |
| keywords[13].display_name | Machine learning |
| keywords[14].id | https://openalex.org/keywords/data-mining |
| keywords[14].score | 0.3326236605644226 |
| keywords[14].display_name | Data mining |
| language | en |
| locations[0].id | doi:10.58825/jog.2022.16.2.46 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4387287116 |
| locations[0].source.issn | 0976-1330 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 0976-1330 |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | Journal of Geomatics |
| locations[0].source.host_organization | |
| locations[0].source.host_organization_name | |
| locations[0].license | cc-by-nc |
| locations[0].pdf_url | https://onlinejog.org/index.php/journal_of_geomatics/article/download/46/8 |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by-nc |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Journal of Geomatics |
| locations[0].landing_page_url | https://doi.org/10.58825/jog.2022.16.2.46 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5044107599 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Mragank Snighal |
| authorships[0].countries | IN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I105454292 |
| authorships[0].affiliations[0].raw_affiliation_string | USIC&T, Guru Gobind Singh Indraprastha University, New Delhi, India |
| authorships[0].institutions[0].id | https://openalex.org/I105454292 |
| authorships[0].institutions[0].ror | https://ror.org/034q1za58 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I105454292 |
| authorships[0].institutions[0].country_code | IN |
| authorships[0].institutions[0].display_name | Guru Gobind Singh Indraprastha University |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Mragank Snighal |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | USIC&T, Guru Gobind Singh Indraprastha University, New Delhi, India |
| authorships[1].author.id | https://openalex.org/A5110216953 |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | Ashish Payal |
| authorships[1].countries | IN |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I105454292 |
| authorships[1].affiliations[0].raw_affiliation_string | USIC&T, Guru Gobind Singh Indraprastha University, New Delhi, India |
| authorships[1].institutions[0].id | https://openalex.org/I105454292 |
| authorships[1].institutions[0].ror | https://ror.org/034q1za58 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I105454292 |
| authorships[1].institutions[0].country_code | IN |
| authorships[1].institutions[0].display_name | Guru Gobind Singh Indraprastha University |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Ashish Payal |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | USIC&T, Guru Gobind Singh Indraprastha University, New Delhi, India |
| authorships[2].author.id | https://openalex.org/A5112884437 |
| authorships[2].author.orcid | |
| authorships[2].author.display_name | Anil Kumar |
| authorships[2].countries | IN |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I51281103 |
| authorships[2].affiliations[0].raw_affiliation_string | Indian Institute of Remote Sensing, Dehradun |
| authorships[2].institutions[0].id | https://openalex.org/I51281103 |
| authorships[2].institutions[0].ror | https://ror.org/04a39s417 |
| authorships[2].institutions[0].type | government |
| authorships[2].institutions[0].lineage | https://openalex.org/I1289461252, https://openalex.org/I3148377317, https://openalex.org/I51281103 |
| authorships[2].institutions[0].country_code | IN |
| authorships[2].institutions[0].display_name | Indian Institute of Remote Sensing |
| authorships[2].author_position | last |
| authorships[2].raw_author_name | Anil Kumar |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Indian Institute of Remote Sensing, Dehradun |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://onlinejog.org/index.php/journal_of_geomatics/article/download/46/8 |
| open_access.oa_status | diamond |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Study of CNN deep learning model for temporal remote sensing data processing to map rabi crops |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10616 |
| primary_topic.field.id | https://openalex.org/fields/11 |
| primary_topic.field.display_name | Agricultural and Biological Sciences |
| primary_topic.score | 0.963100016117096 |
| primary_topic.domain.id | https://openalex.org/domains/1 |
| primary_topic.domain.display_name | Life Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1110 |
| primary_topic.subfield.display_name | Plant Science |
| primary_topic.display_name | Smart Agriculture and AI |
| related_works | https://openalex.org/W3024979424, https://openalex.org/W4283785902, https://openalex.org/W2895192346, https://openalex.org/W3032499992, https://openalex.org/W2041004593, https://openalex.org/W3134817226, https://openalex.org/W3110577345, https://openalex.org/W3136579697, https://openalex.org/W2811324119, https://openalex.org/W1504105233 |
| cited_by_count | 1 |
| counts_by_year[0].year | 2023 |
| counts_by_year[0].cited_by_count | 1 |
| locations_count | 1 |
| best_oa_location.id | doi:10.58825/jog.2022.16.2.46 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4387287116 |
| best_oa_location.source.issn | 0976-1330 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 0976-1330 |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | Journal of Geomatics |
| best_oa_location.source.host_organization | |
| best_oa_location.source.host_organization_name | |
| best_oa_location.license | cc-by-nc |
| best_oa_location.pdf_url | https://onlinejog.org/index.php/journal_of_geomatics/article/download/46/8 |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by-nc |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Journal of Geomatics |
| best_oa_location.landing_page_url | https://doi.org/10.58825/jog.2022.16.2.46 |
| primary_location.id | doi:10.58825/jog.2022.16.2.46 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4387287116 |
| primary_location.source.issn | 0976-1330 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 0976-1330 |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | Journal of Geomatics |
| primary_location.source.host_organization | |
| primary_location.source.host_organization_name | |
| primary_location.license | cc-by-nc |
| primary_location.pdf_url | https://onlinejog.org/index.php/journal_of_geomatics/article/download/46/8 |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by-nc |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Journal of Geomatics |
| primary_location.landing_page_url | https://doi.org/10.58825/jog.2022.16.2.46 |
| publication_date | 2022-10-31 |
| publication_year | 2022 |
| referenced_works | https://openalex.org/W1995450389, https://openalex.org/W64386431, https://openalex.org/W2064670135, https://openalex.org/W2919115771, https://openalex.org/W2098676252, https://openalex.org/W6701947533, https://openalex.org/W2120688485, https://openalex.org/W2534461748, https://openalex.org/W2996836954, https://openalex.org/W2982580633, https://openalex.org/W1973885489, https://openalex.org/W2968820211, https://openalex.org/W3120359875, https://openalex.org/W6636950212, https://openalex.org/W2085518568, https://openalex.org/W3133851450, https://openalex.org/W3034470373, https://openalex.org/W2165000449, https://openalex.org/W2062404323, https://openalex.org/W2809254203, https://openalex.org/W2785486933, https://openalex.org/W3203276063, https://openalex.org/W2163922914, https://openalex.org/W2989983865, https://openalex.org/W2077707413, https://openalex.org/W2331143823, https://openalex.org/W4299518610, https://openalex.org/W4300952079, https://openalex.org/W2908890414, https://openalex.org/W2005073772 |
| referenced_works_count | 30 |
| abstract_inverted_index.1 | 138, 152 |
| abstract_inverted_index.5 | 109, 145, 173 |
| abstract_inverted_index.A | 226 |
| abstract_inverted_index.a | 5, 156, 169, 224 |
| abstract_inverted_index.10 | 154 |
| abstract_inverted_index.30 | 177 |
| abstract_inverted_index.50 | 140 |
| abstract_inverted_index.an | 12 |
| abstract_inverted_index.as | 181, 187, 203, 209 |
| abstract_inverted_index.in | 100, 141, 184, 219 |
| abstract_inverted_index.is | 4 |
| abstract_inverted_index.of | 14, 26, 29, 35, 42, 66, 92, 144, 159, 172, 176, 195, 241, 245, 267 |
| abstract_inverted_index.to | 16, 139, 153, 205, 255 |
| abstract_inverted_index.1st | 85 |
| abstract_inverted_index.200 | 160 |
| abstract_inverted_index.CNN | 48, 97, 196, 211 |
| abstract_inverted_index.Feb | 90 |
| abstract_inverted_index.Nov | 86 |
| abstract_inverted_index.The | 64, 96, 165, 193 |
| abstract_inverted_index.and | 57, 68, 88, 116, 146, 174, 249, 264 |
| abstract_inverted_index.are | 213 |
| abstract_inverted_index.elu | 115 |
| abstract_inverted_index.for | 19, 32, 52, 118, 128, 155, 162, 198, 238 |
| abstract_inverted_index.has | 10, 39, 134, 178, 228, 261 |
| abstract_inverted_index.how | 257 |
| abstract_inverted_index.lot | 41 |
| abstract_inverted_index.out | 120 |
| abstract_inverted_index.set | 244 |
| abstract_inverted_index.the | 17, 24, 83, 125, 129, 142, 188, 206, 210, 221, 239, 242, 258, 265 |
| abstract_inverted_index.was | 190 |
| abstract_inverted_index.2019 | 87 |
| abstract_inverted_index.2020 | 91 |
| abstract_inverted_index.24th | 89 |
| abstract_inverted_index.CNN, | 27 |
| abstract_inverted_index.This | 44, 216 |
| abstract_inverted_index.With | 23 |
| abstract_inverted_index.also | 217 |
| abstract_inverted_index.area | 13 |
| abstract_inverted_index.been | 72, 135, 149, 179, 229, 253, 262 |
| abstract_inverted_index.best | 126, 182 |
| abstract_inverted_index.data | 158 |
| abstract_inverted_index.deep | 6, 30, 49 |
| abstract_inverted_index.each | 163 |
| abstract_inverted_index.from | 79, 137, 151 |
| abstract_inverted_index.gave | 124 |
| abstract_inverted_index.have | 71, 148, 252 |
| abstract_inverted_index.rabi | 54 |
| abstract_inverted_index.same | 243 |
| abstract_inverted_index.show | 256 |
| abstract_inverted_index.size | 133, 171 |
| abstract_inverted_index.that | 9 |
| abstract_inverted_index.this | 101, 185 |
| abstract_inverted_index.uses | 47, 104 |
| abstract_inverted_index.with | 108, 168 |
| abstract_inverted_index.work | 46, 103 |
| abstract_inverted_index.(CNN) | 3 |
| abstract_inverted_index.2A/2B | 81 |
| abstract_inverted_index.Batch | 132 |
| abstract_inverted_index.Kappa | 248 |
| abstract_inverted_index.along | 107 |
| abstract_inverted_index.batch | 170 |
| abstract_inverted_index.crops | 55, 70 |
| abstract_inverted_index.data. | 63 |
| abstract_inverted_index.dates | 84 |
| abstract_inverted_index.fuzzy | 236 |
| abstract_inverted_index.helps | 218 |
| abstract_inverted_index.level | 266 |
| abstract_inverted_index.model | 51, 98, 197 |
| abstract_inverted_index.selu) | 117 |
| abstract_inverted_index.shows | 200 |
| abstract_inverted_index.study | 186 |
| abstract_inverted_index.tanh, | 114 |
| abstract_inverted_index.using | 59, 74, 231 |
| abstract_inverted_index.value | 167 |
| abstract_inverted_index.wheat | 69 |
| abstract_inverted_index.which | 121 |
| abstract_inverted_index.(MPCM) | 235 |
| abstract_inverted_index.(relu, | 112 |
| abstract_inverted_index.Neural | 1 |
| abstract_inverted_index.become | 11 |
| abstract_inverted_index.better | 201 |
| abstract_inverted_index.class. | 164, 225 |
| abstract_inverted_index.epochs | 147, 175 |
| abstract_inverted_index.gained | 40 |
| abstract_inverted_index.images | 38, 77 |
| abstract_inverted_index.layers | 106 |
| abstract_inverted_index.remote | 61 |
| abstract_inverted_index.result | 127 |
| abstract_inverted_index.sensed | 37 |
| abstract_inverted_index.study. | 131 |
| abstract_inverted_index.suited | 183 |
| abstract_inverted_index.tested | 150 |
| abstract_inverted_index.wheat) | 58 |
| abstract_inverted_index.within | 223 |
| abstract_inverted_index.Network | 2 |
| abstract_inverted_index.Overall | 250 |
| abstract_inverted_index.between | 82 |
| abstract_inverted_index.c-Means | 234 |
| abstract_inverted_index.complex | 21 |
| abstract_inverted_index.created | 99 |
| abstract_inverted_index.finding | 119 |
| abstract_inverted_index.getting | 191 |
| abstract_inverted_index.mapping | 53 |
| abstract_inverted_index.mustard | 67 |
| abstract_inverted_index.optimal | 166 |
| abstract_inverted_index.region. | 95 |
| abstract_inverted_index.results | 202 |
| abstract_inverted_index.samples | 161 |
| abstract_inverted_index.sensing | 62 |
| abstract_inverted_index.several | 105 |
| abstract_inverted_index.solving | 20 |
| abstract_inverted_index.(mustard | 56 |
| abstract_inverted_index.Accuracy | 251 |
| abstract_inverted_index.F-Score, | 247 |
| abstract_inverted_index.Modified | 232 |
| abstract_inverted_index.Sentinel | 80 |
| abstract_inverted_index.accuracy | 189, 269 |
| abstract_inverted_index.accurate | 33 |
| abstract_inverted_index.approach | 8, 208, 260 |
| abstract_inverted_index.classes. | 246 |
| abstract_inverted_index.compared | 204 |
| abstract_inverted_index.examined | 136 |
| abstract_inverted_index.features | 31 |
| abstract_inverted_index.function | 123 |
| abstract_inverted_index.handling | 220 |
| abstract_inverted_index.interest | 15 |
| abstract_inverted_index.learning | 7, 50, 214 |
| abstract_inverted_index.mappings | 65 |
| abstract_inverted_index.multiple | 143 |
| abstract_inverted_index.obtained | 78 |
| abstract_inverted_index.proposed | 130, 259 |
| abstract_inverted_index.remotely | 36 |
| abstract_inverted_index.research | 45, 102 |
| abstract_inverted_index.sigmoid, | 113 |
| abstract_inverted_index.temporal | 60, 76 |
| abstract_inverted_index.training | 157 |
| abstract_inverted_index.Rajasthan | 94 |
| abstract_inverted_index.achieved. | 270 |
| abstract_inverted_index.algorithm | 237 |
| abstract_inverted_index.conducted | 73, 230 |
| abstract_inverted_index.constant. | 192 |
| abstract_inverted_index.functions | 111 |
| abstract_inverted_index.momentum. | 43 |
| abstract_inverted_index.problems. | 22 |
| abstract_inverted_index.activation | 110, 122 |
| abstract_inverted_index.algorithms | 212 |
| abstract_inverted_index.calculated | 180, 254 |
| abstract_inverted_index.comparison | 227 |
| abstract_inverted_index.evaluation | 25 |
| abstract_inverted_index.extraction | 28 |
| abstract_inverted_index.Banasthali, | 93 |
| abstract_inverted_index.Convolution | 0 |
| abstract_inverted_index.algorithms. | 215 |
| abstract_inverted_index.researchers | 18 |
| abstract_inverted_index.traditional | 207 |
| abstract_inverted_index.outperformed | 263 |
| abstract_inverted_index.Possibilistic | 233 |
| abstract_inverted_index.heterogeneity | 222 |
| abstract_inverted_index.multispectral | 75 |
| abstract_inverted_index.classification | 34, 199, 240, 268 |
| abstract_inverted_index.implementation | 194 |
| cited_by_percentile_year.max | 94 |
| cited_by_percentile_year.min | 89 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 3 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/2 |
| sustainable_development_goals[0].score | 0.41999998688697815 |
| sustainable_development_goals[0].display_name | Zero hunger |
| citation_normalized_percentile.value | 0.69541444 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |