Study on Short-Term Electricity Load Forecasting Based on the Modified Simplex Approach Sparrow Search Algorithm Mixed with a Bidirectional Long- and Short-Term Memory Network Article Swipe
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.3390/pr12091796
In order to balance power supply and demand, which is crucial for the safe and effective functioning of power systems, short-term power load forecasting is a crucial component of power system planning and operation. This paper aims to address the issue of low prediction accuracy resulting from power load volatility and nonlinearity. It suggests optimizing the number of hidden layer nodes, number of iterations, and learning rate of bi-directional long- and short-term memory networks using the improved sparrow search algorithm, and predicting the actual load data using the load prediction model. Using actual power load data from Wuxi, Jiangsu Province, China, as a dataset, the model makes predictions. The results indicate that the model is effective because the enhanced sparrow algorithm optimizes the bi-directional long- and short-term memory network model for predicting the power load data with a relative error of only 2%, which is higher than the prediction accuracy of the other models proposed in the paper.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.3390/pr12091796
- https://www.mdpi.com/2227-9717/12/9/1796/pdf?version=1724422783
- OA Status
- gold
- Cited By
- 7
- References
- 21
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4401807425
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4401807425Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.3390/pr12091796Digital Object Identifier
- Title
-
Study on Short-Term Electricity Load Forecasting Based on the Modified Simplex Approach Sparrow Search Algorithm Mixed with a Bidirectional Long- and Short-Term Memory NetworkWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-08-23Full publication date if available
- Authors
-
Chenjun Zhang, F. Zhang, Fuyang Gou, Wensi CaoList of authors in order
- Landing page
-
https://doi.org/10.3390/pr12091796Publisher landing page
- PDF URL
-
https://www.mdpi.com/2227-9717/12/9/1796/pdf?version=1724422783Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://www.mdpi.com/2227-9717/12/9/1796/pdf?version=1724422783Direct OA link when available
- Concepts
-
Term (time), Sparrow, Long short term memory, Computer science, Short-term memory, Simplex, Algorithm, Mathematical optimization, Mathematics, Artificial intelligence, Artificial neural network, Cognition, Combinatorics, Working memory, Physics, Biology, Quantum mechanics, Recurrent neural network, Ecology, NeuroscienceTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
7Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 5, 2024: 2Per-year citation counts (last 5 years)
- References (count)
-
21Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4401807425 |
|---|---|
| doi | https://doi.org/10.3390/pr12091796 |
| ids.doi | https://doi.org/10.3390/pr12091796 |
| ids.openalex | https://openalex.org/W4401807425 |
| fwci | 2.58417931 |
| type | article |
| title | Study on Short-Term Electricity Load Forecasting Based on the Modified Simplex Approach Sparrow Search Algorithm Mixed with a Bidirectional Long- and Short-Term Memory Network |
| biblio.issue | 9 |
| biblio.volume | 12 |
| biblio.last_page | 1796 |
| biblio.first_page | 1796 |
| topics[0].id | https://openalex.org/T11052 |
| topics[0].field.id | https://openalex.org/fields/22 |
| topics[0].field.display_name | Engineering |
| topics[0].score | 0.9991999864578247 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2208 |
| topics[0].subfield.display_name | Electrical and Electronic Engineering |
| topics[0].display_name | Energy Load and Power Forecasting |
| topics[1].id | https://openalex.org/T12451 |
| topics[1].field.id | https://openalex.org/fields/22 |
| topics[1].field.display_name | Engineering |
| topics[1].score | 0.9793999791145325 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2208 |
| topics[1].subfield.display_name | Electrical and Electronic Engineering |
| topics[1].display_name | Smart Grid and Power Systems |
| topics[2].id | https://openalex.org/T13717 |
| topics[2].field.id | https://openalex.org/fields/22 |
| topics[2].field.display_name | Engineering |
| topics[2].score | 0.965499997138977 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2207 |
| topics[2].subfield.display_name | Control and Systems Engineering |
| topics[2].display_name | Advanced Algorithms and Applications |
| is_xpac | False |
| apc_list.value | 2000 |
| apc_list.currency | CHF |
| apc_list.value_usd | 2165 |
| apc_paid.value | 2000 |
| apc_paid.currency | CHF |
| apc_paid.value_usd | 2165 |
| concepts[0].id | https://openalex.org/C61797465 |
| concepts[0].level | 2 |
| concepts[0].score | 0.8869003057479858 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q1188986 |
| concepts[0].display_name | Term (time) |
| concepts[1].id | https://openalex.org/C2778825724 |
| concepts[1].level | 2 |
| concepts[1].score | 0.7563097476959229 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q243984 |
| concepts[1].display_name | Sparrow |
| concepts[2].id | https://openalex.org/C133488467 |
| concepts[2].level | 4 |
| concepts[2].score | 0.6214713454246521 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q6673524 |
| concepts[2].display_name | Long short term memory |
| concepts[3].id | https://openalex.org/C41008148 |
| concepts[3].level | 0 |
| concepts[3].score | 0.5187944769859314 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[3].display_name | Computer science |
| concepts[4].id | https://openalex.org/C179226034 |
| concepts[4].level | 4 |
| concepts[4].score | 0.5070996284484863 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q18599 |
| concepts[4].display_name | Short-term memory |
| concepts[5].id | https://openalex.org/C62438384 |
| concepts[5].level | 2 |
| concepts[5].score | 0.4949929118156433 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q331350 |
| concepts[5].display_name | Simplex |
| concepts[6].id | https://openalex.org/C11413529 |
| concepts[6].level | 1 |
| concepts[6].score | 0.4888586401939392 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q8366 |
| concepts[6].display_name | Algorithm |
| concepts[7].id | https://openalex.org/C126255220 |
| concepts[7].level | 1 |
| concepts[7].score | 0.3335740268230438 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q141495 |
| concepts[7].display_name | Mathematical optimization |
| concepts[8].id | https://openalex.org/C33923547 |
| concepts[8].level | 0 |
| concepts[8].score | 0.235201895236969 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[8].display_name | Mathematics |
| concepts[9].id | https://openalex.org/C154945302 |
| concepts[9].level | 1 |
| concepts[9].score | 0.20163986086845398 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[9].display_name | Artificial intelligence |
| concepts[10].id | https://openalex.org/C50644808 |
| concepts[10].level | 2 |
| concepts[10].score | 0.11137819290161133 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q192776 |
| concepts[10].display_name | Artificial neural network |
| concepts[11].id | https://openalex.org/C169900460 |
| concepts[11].level | 2 |
| concepts[11].score | 0.07438626885414124 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q2200417 |
| concepts[11].display_name | Cognition |
| concepts[12].id | https://openalex.org/C114614502 |
| concepts[12].level | 1 |
| concepts[12].score | 0.06572225689888 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q76592 |
| concepts[12].display_name | Combinatorics |
| concepts[13].id | https://openalex.org/C21963081 |
| concepts[13].level | 3 |
| concepts[13].score | 0.06346186995506287 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q11337567 |
| concepts[13].display_name | Working memory |
| concepts[14].id | https://openalex.org/C121332964 |
| concepts[14].level | 0 |
| concepts[14].score | 0.05502372980117798 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q413 |
| concepts[14].display_name | Physics |
| concepts[15].id | https://openalex.org/C86803240 |
| concepts[15].level | 0 |
| concepts[15].score | 0.0 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q420 |
| concepts[15].display_name | Biology |
| concepts[16].id | https://openalex.org/C62520636 |
| concepts[16].level | 1 |
| concepts[16].score | 0.0 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q944 |
| concepts[16].display_name | Quantum mechanics |
| concepts[17].id | https://openalex.org/C147168706 |
| concepts[17].level | 3 |
| concepts[17].score | 0.0 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q1457734 |
| concepts[17].display_name | Recurrent neural network |
| concepts[18].id | https://openalex.org/C18903297 |
| concepts[18].level | 1 |
| concepts[18].score | 0.0 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q7150 |
| concepts[18].display_name | Ecology |
| concepts[19].id | https://openalex.org/C169760540 |
| concepts[19].level | 1 |
| concepts[19].score | 0.0 |
| concepts[19].wikidata | https://www.wikidata.org/wiki/Q207011 |
| concepts[19].display_name | Neuroscience |
| keywords[0].id | https://openalex.org/keywords/term |
| keywords[0].score | 0.8869003057479858 |
| keywords[0].display_name | Term (time) |
| keywords[1].id | https://openalex.org/keywords/sparrow |
| keywords[1].score | 0.7563097476959229 |
| keywords[1].display_name | Sparrow |
| keywords[2].id | https://openalex.org/keywords/long-short-term-memory |
| keywords[2].score | 0.6214713454246521 |
| keywords[2].display_name | Long short term memory |
| keywords[3].id | https://openalex.org/keywords/computer-science |
| keywords[3].score | 0.5187944769859314 |
| keywords[3].display_name | Computer science |
| keywords[4].id | https://openalex.org/keywords/short-term-memory |
| keywords[4].score | 0.5070996284484863 |
| keywords[4].display_name | Short-term memory |
| keywords[5].id | https://openalex.org/keywords/simplex |
| keywords[5].score | 0.4949929118156433 |
| keywords[5].display_name | Simplex |
| keywords[6].id | https://openalex.org/keywords/algorithm |
| keywords[6].score | 0.4888586401939392 |
| keywords[6].display_name | Algorithm |
| keywords[7].id | https://openalex.org/keywords/mathematical-optimization |
| keywords[7].score | 0.3335740268230438 |
| keywords[7].display_name | Mathematical optimization |
| keywords[8].id | https://openalex.org/keywords/mathematics |
| keywords[8].score | 0.235201895236969 |
| keywords[8].display_name | Mathematics |
| keywords[9].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[9].score | 0.20163986086845398 |
| keywords[9].display_name | Artificial intelligence |
| keywords[10].id | https://openalex.org/keywords/artificial-neural-network |
| keywords[10].score | 0.11137819290161133 |
| keywords[10].display_name | Artificial neural network |
| keywords[11].id | https://openalex.org/keywords/cognition |
| keywords[11].score | 0.07438626885414124 |
| keywords[11].display_name | Cognition |
| keywords[12].id | https://openalex.org/keywords/combinatorics |
| keywords[12].score | 0.06572225689888 |
| keywords[12].display_name | Combinatorics |
| keywords[13].id | https://openalex.org/keywords/working-memory |
| keywords[13].score | 0.06346186995506287 |
| keywords[13].display_name | Working memory |
| keywords[14].id | https://openalex.org/keywords/physics |
| keywords[14].score | 0.05502372980117798 |
| keywords[14].display_name | Physics |
| language | en |
| locations[0].id | doi:10.3390/pr12091796 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4210201879 |
| locations[0].source.issn | 2227-9717 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2227-9717 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | Processes |
| locations[0].source.host_organization | https://openalex.org/P4310310987 |
| locations[0].source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310310987 |
| locations[0].source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://www.mdpi.com/2227-9717/12/9/1796/pdf?version=1724422783 |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Processes |
| locations[0].landing_page_url | https://doi.org/10.3390/pr12091796 |
| locations[1].id | pmh:oai:mdpi.com:/2227-9717/12/9/1796/ |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400947 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | MDPI (MDPI AG) |
| locations[1].source.host_organization | https://openalex.org/I4210097602 |
| locations[1].source.host_organization_name | Multidisciplinary Digital Publishing Institute (Switzerland) |
| locations[1].source.host_organization_lineage | https://openalex.org/I4210097602 |
| locations[1].license | cc-by |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | Text |
| locations[1].license_id | https://openalex.org/licenses/cc-by |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | Processes |
| locations[1].landing_page_url | https://dx.doi.org/10.3390/pr12091796 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5022437403 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Chenjun Zhang |
| authorships[0].countries | CN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I115592961 |
| authorships[0].affiliations[0].raw_affiliation_string | School of Agriculture Engineering, Jiangsu University, Zhenjiang 212013, China |
| authorships[0].affiliations[1].institution_ids | https://openalex.org/I72565114 |
| authorships[0].affiliations[1].raw_affiliation_string | School of Intelligent Manufacturing, Luoyang Institute of Science and Technology, Luoyang 471023, China |
| authorships[0].institutions[0].id | https://openalex.org/I115592961 |
| authorships[0].institutions[0].ror | https://ror.org/03jc41j30 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I115592961 |
| authorships[0].institutions[0].country_code | CN |
| authorships[0].institutions[0].display_name | Jiangsu University |
| authorships[0].institutions[1].id | https://openalex.org/I72565114 |
| authorships[0].institutions[1].ror | https://ror.org/04nraex26 |
| authorships[0].institutions[1].type | education |
| authorships[0].institutions[1].lineage | https://openalex.org/I72565114 |
| authorships[0].institutions[1].country_code | CN |
| authorships[0].institutions[1].display_name | Luoyang Institute of Science and Technology |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Chenjun Zhang |
| authorships[0].is_corresponding | True |
| authorships[0].raw_affiliation_strings | School of Agriculture Engineering, Jiangsu University, Zhenjiang 212013, China, School of Intelligent Manufacturing, Luoyang Institute of Science and Technology, Luoyang 471023, China |
| authorships[1].author.id | https://openalex.org/A5058585663 |
| authorships[1].author.orcid | https://orcid.org/0009-0009-2411-9253 |
| authorships[1].author.display_name | F. Zhang |
| authorships[1].countries | CN |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I198645480 |
| authorships[1].affiliations[0].raw_affiliation_string | School of Electrical Engineering, North China University of Water Resources and Electric Power, Zhengzhou 450045, China |
| authorships[1].institutions[0].id | https://openalex.org/I198645480 |
| authorships[1].institutions[0].ror | https://ror.org/03acrzv41 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I198645480 |
| authorships[1].institutions[0].country_code | CN |
| authorships[1].institutions[0].display_name | North China University of Water Resources and Electric Power |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Fuqian Zhang |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | School of Electrical Engineering, North China University of Water Resources and Electric Power, Zhengzhou 450045, China |
| authorships[2].author.id | https://openalex.org/A5108973097 |
| authorships[2].author.orcid | |
| authorships[2].author.display_name | Fuyang Gou |
| authorships[2].countries | CN |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I198645480 |
| authorships[2].affiliations[0].raw_affiliation_string | School of Electrical Engineering, North China University of Water Resources and Electric Power, Zhengzhou 450045, China |
| authorships[2].institutions[0].id | https://openalex.org/I198645480 |
| authorships[2].institutions[0].ror | https://ror.org/03acrzv41 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I198645480 |
| authorships[2].institutions[0].country_code | CN |
| authorships[2].institutions[0].display_name | North China University of Water Resources and Electric Power |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Fuyang Gou |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | School of Electrical Engineering, North China University of Water Resources and Electric Power, Zhengzhou 450045, China |
| authorships[3].author.id | https://openalex.org/A5003635900 |
| authorships[3].author.orcid | https://orcid.org/0000-0001-7227-7824 |
| authorships[3].author.display_name | Wensi Cao |
| authorships[3].countries | CN |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I198645480 |
| authorships[3].affiliations[0].raw_affiliation_string | School of Electrical Engineering, North China University of Water Resources and Electric Power, Zhengzhou 450045, China |
| authorships[3].institutions[0].id | https://openalex.org/I198645480 |
| authorships[3].institutions[0].ror | https://ror.org/03acrzv41 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I198645480 |
| authorships[3].institutions[0].country_code | CN |
| authorships[3].institutions[0].display_name | North China University of Water Resources and Electric Power |
| authorships[3].author_position | last |
| authorships[3].raw_author_name | Wensi Cao |
| authorships[3].is_corresponding | True |
| authorships[3].raw_affiliation_strings | School of Electrical Engineering, North China University of Water Resources and Electric Power, Zhengzhou 450045, China |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://www.mdpi.com/2227-9717/12/9/1796/pdf?version=1724422783 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Study on Short-Term Electricity Load Forecasting Based on the Modified Simplex Approach Sparrow Search Algorithm Mixed with a Bidirectional Long- and Short-Term Memory Network |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T11052 |
| primary_topic.field.id | https://openalex.org/fields/22 |
| primary_topic.field.display_name | Engineering |
| primary_topic.score | 0.9991999864578247 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2208 |
| primary_topic.subfield.display_name | Electrical and Electronic Engineering |
| primary_topic.display_name | Energy Load and Power Forecasting |
| related_works | https://openalex.org/W4398744184, https://openalex.org/W2090667432, https://openalex.org/W4243618332, https://openalex.org/W4398334694, https://openalex.org/W4398366034, https://openalex.org/W4386959565, https://openalex.org/W2271485399, https://openalex.org/W4398378462, https://openalex.org/W4398431573, https://openalex.org/W4225519494 |
| cited_by_count | 7 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 5 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 2 |
| locations_count | 2 |
| best_oa_location.id | doi:10.3390/pr12091796 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4210201879 |
| best_oa_location.source.issn | 2227-9717 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2227-9717 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | Processes |
| best_oa_location.source.host_organization | https://openalex.org/P4310310987 |
| best_oa_location.source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| best_oa_location.source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://www.mdpi.com/2227-9717/12/9/1796/pdf?version=1724422783 |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Processes |
| best_oa_location.landing_page_url | https://doi.org/10.3390/pr12091796 |
| primary_location.id | doi:10.3390/pr12091796 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4210201879 |
| primary_location.source.issn | 2227-9717 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2227-9717 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | Processes |
| primary_location.source.host_organization | https://openalex.org/P4310310987 |
| primary_location.source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| primary_location.source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://www.mdpi.com/2227-9717/12/9/1796/pdf?version=1724422783 |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Processes |
| primary_location.landing_page_url | https://doi.org/10.3390/pr12091796 |
| publication_date | 2024-08-23 |
| publication_year | 2024 |
| referenced_works | https://openalex.org/W4376138527, https://openalex.org/W4220777614, https://openalex.org/W3165310135, https://openalex.org/W3042532020, https://openalex.org/W4283579117, https://openalex.org/W3109239204, https://openalex.org/W3025975045, https://openalex.org/W3129762955, https://openalex.org/W3080807650, https://openalex.org/W3194119240, https://openalex.org/W3007075806, https://openalex.org/W3197500874, https://openalex.org/W3201727090, https://openalex.org/W2064675550, https://openalex.org/W2144499799, https://openalex.org/W4389481088, https://openalex.org/W4388671920, https://openalex.org/W2914767245, https://openalex.org/W2998553334, https://openalex.org/W4389326446, https://openalex.org/W4388424663 |
| referenced_works_count | 21 |
| abstract_inverted_index.a | 25, 102, 137 |
| abstract_inverted_index.In | 0 |
| abstract_inverted_index.It | 52 |
| abstract_inverted_index.as | 101 |
| abstract_inverted_index.in | 155 |
| abstract_inverted_index.is | 9, 24, 114, 144 |
| abstract_inverted_index.of | 17, 28, 41, 57, 62, 67, 140, 150 |
| abstract_inverted_index.to | 2, 37 |
| abstract_inverted_index.2%, | 142 |
| abstract_inverted_index.The | 108 |
| abstract_inverted_index.and | 6, 14, 32, 50, 64, 70, 80, 125 |
| abstract_inverted_index.for | 11, 130 |
| abstract_inverted_index.low | 42 |
| abstract_inverted_index.the | 12, 39, 55, 75, 82, 87, 104, 112, 117, 122, 132, 147, 151, 156 |
| abstract_inverted_index.This | 34 |
| abstract_inverted_index.aims | 36 |
| abstract_inverted_index.data | 85, 95, 135 |
| abstract_inverted_index.from | 46, 96 |
| abstract_inverted_index.load | 22, 48, 84, 88, 94, 134 |
| abstract_inverted_index.only | 141 |
| abstract_inverted_index.rate | 66 |
| abstract_inverted_index.safe | 13 |
| abstract_inverted_index.than | 146 |
| abstract_inverted_index.that | 111 |
| abstract_inverted_index.with | 136 |
| abstract_inverted_index.Using | 91 |
| abstract_inverted_index.Wuxi, | 97 |
| abstract_inverted_index.error | 139 |
| abstract_inverted_index.issue | 40 |
| abstract_inverted_index.layer | 59 |
| abstract_inverted_index.long- | 69, 124 |
| abstract_inverted_index.makes | 106 |
| abstract_inverted_index.model | 105, 113, 129 |
| abstract_inverted_index.order | 1 |
| abstract_inverted_index.other | 152 |
| abstract_inverted_index.paper | 35 |
| abstract_inverted_index.power | 4, 18, 21, 29, 47, 93, 133 |
| abstract_inverted_index.using | 74, 86 |
| abstract_inverted_index.which | 8, 143 |
| abstract_inverted_index.China, | 100 |
| abstract_inverted_index.actual | 83, 92 |
| abstract_inverted_index.hidden | 58 |
| abstract_inverted_index.higher | 145 |
| abstract_inverted_index.memory | 72, 127 |
| abstract_inverted_index.model. | 90 |
| abstract_inverted_index.models | 153 |
| abstract_inverted_index.nodes, | 60 |
| abstract_inverted_index.number | 56, 61 |
| abstract_inverted_index.paper. | 157 |
| abstract_inverted_index.search | 78 |
| abstract_inverted_index.supply | 5 |
| abstract_inverted_index.system | 30 |
| abstract_inverted_index.Jiangsu | 98 |
| abstract_inverted_index.address | 38 |
| abstract_inverted_index.balance | 3 |
| abstract_inverted_index.because | 116 |
| abstract_inverted_index.crucial | 10, 26 |
| abstract_inverted_index.demand, | 7 |
| abstract_inverted_index.network | 128 |
| abstract_inverted_index.results | 109 |
| abstract_inverted_index.sparrow | 77, 119 |
| abstract_inverted_index.accuracy | 44, 149 |
| abstract_inverted_index.dataset, | 103 |
| abstract_inverted_index.enhanced | 118 |
| abstract_inverted_index.improved | 76 |
| abstract_inverted_index.indicate | 110 |
| abstract_inverted_index.learning | 65 |
| abstract_inverted_index.networks | 73 |
| abstract_inverted_index.planning | 31 |
| abstract_inverted_index.proposed | 154 |
| abstract_inverted_index.relative | 138 |
| abstract_inverted_index.suggests | 53 |
| abstract_inverted_index.systems, | 19 |
| abstract_inverted_index.Province, | 99 |
| abstract_inverted_index.algorithm | 120 |
| abstract_inverted_index.component | 27 |
| abstract_inverted_index.effective | 15, 115 |
| abstract_inverted_index.optimizes | 121 |
| abstract_inverted_index.resulting | 45 |
| abstract_inverted_index.algorithm, | 79 |
| abstract_inverted_index.operation. | 33 |
| abstract_inverted_index.optimizing | 54 |
| abstract_inverted_index.predicting | 81, 131 |
| abstract_inverted_index.prediction | 43, 89, 148 |
| abstract_inverted_index.short-term | 20, 71, 126 |
| abstract_inverted_index.volatility | 49 |
| abstract_inverted_index.forecasting | 23 |
| abstract_inverted_index.functioning | 16 |
| abstract_inverted_index.iterations, | 63 |
| abstract_inverted_index.predictions. | 107 |
| abstract_inverted_index.nonlinearity. | 51 |
| abstract_inverted_index.bi-directional | 68, 123 |
| cited_by_percentile_year.max | 98 |
| cited_by_percentile_year.min | 94 |
| corresponding_author_ids | https://openalex.org/A5003635900, https://openalex.org/A5022437403 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 4 |
| corresponding_institution_ids | https://openalex.org/I115592961, https://openalex.org/I198645480, https://openalex.org/I72565114 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/7 |
| sustainable_development_goals[0].score | 0.7799999713897705 |
| sustainable_development_goals[0].display_name | Affordable and clean energy |
| citation_normalized_percentile.value | 0.87112704 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |