Study on the 3DVar emission inversion method combined with machine learning in CMAQ Article Swipe
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.5194/egusphere-egu24-2763
The air quality model is increasingly important in air pollution forecasting and controlling. Emissions significantly impact the accuracy of air quality models. This research studied the 3DVar (three-dimensional variational) emission inversion method based on machine learning in CMAQ (The Community Multiscale Air Quality modeling system). The ExRT(extremely randomized trees method) machine learning conversion matrixes were established to convert the pollutant concentration innovations to the corresponding emission intensity innovations, extended 3DVar to emission inversion. The O3 and NO2 concentration, NOx and VOCs emissions are modeled using machine learning, taking account of the nonlinearity of the O3-NOx-VOCs processes. This method significantly improved the simulation ability of O3. Taking the air pollution process in the BTH region from January 15 to 30, 2019 as an example, ExRT-3DVar (3DEx) and Nudging (Nud) emission assimilation experiments were caried out. Compared with the simulation without assimilation (NODA), the Nudging method has better assimilation effects on PM10 and NO2, with the regional errors reduced by 14%, 2%, and the temporal errors reduced by 31%, 34%; ExRT-3DVar has better effects on the assimilation of PM2.5, O3, SO2, the regional errors were reduced by 40%, 29%, 13%, and the temporal errors were reduced by 49%, 10%, 33%. This simplicity, efficiently and extensibility framework of ExRT-3DVar method has been proved to be a good way to adjust emissions in CMAQ and still remains much to be done in the future.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- https://doi.org/10.5194/egusphere-egu24-2763
- OA Status
- gold
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4392587768
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4392587768Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.5194/egusphere-egu24-2763Digital Object Identifier
- Title
-
Study on the 3DVar emission inversion method combined with machine learning in CMAQWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-03-08Full publication date if available
- Authors
-
Congwu Huang, Tijian Wang, Tao NiuList of authors in order
- Landing page
-
https://doi.org/10.5194/egusphere-egu24-2763Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.5194/egusphere-egu24-2763Direct OA link when available
- Concepts
-
Inversion (geology), CMAQ, Environmental science, Computer science, Geology, Meteorology, Physics, Air quality index, Seismology, TectonicsTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4392587768 |
|---|---|
| doi | https://doi.org/10.5194/egusphere-egu24-2763 |
| ids.doi | https://doi.org/10.5194/egusphere-egu24-2763 |
| ids.openalex | https://openalex.org/W4392587768 |
| fwci | 0.0 |
| type | preprint |
| title | Study on the 3DVar emission inversion method combined with machine learning in CMAQ |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T14158 |
| topics[0].field.id | https://openalex.org/fields/22 |
| topics[0].field.display_name | Engineering |
| topics[0].score | 0.9254999756813049 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2208 |
| topics[0].subfield.display_name | Electrical and Electronic Engineering |
| topics[0].display_name | Optical Systems and Laser Technology |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C1893757 |
| concepts[0].level | 3 |
| concepts[0].score | 0.6609039306640625 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q3653001 |
| concepts[0].display_name | Inversion (geology) |
| concepts[1].id | https://openalex.org/C2776845762 |
| concepts[1].level | 3 |
| concepts[1].score | 0.619806170463562 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q23579663 |
| concepts[1].display_name | CMAQ |
| concepts[2].id | https://openalex.org/C39432304 |
| concepts[2].level | 0 |
| concepts[2].score | 0.43077582120895386 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q188847 |
| concepts[2].display_name | Environmental science |
| concepts[3].id | https://openalex.org/C41008148 |
| concepts[3].level | 0 |
| concepts[3].score | 0.40733087062835693 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[3].display_name | Computer science |
| concepts[4].id | https://openalex.org/C127313418 |
| concepts[4].level | 0 |
| concepts[4].score | 0.21026384830474854 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q1069 |
| concepts[4].display_name | Geology |
| concepts[5].id | https://openalex.org/C153294291 |
| concepts[5].level | 1 |
| concepts[5].score | 0.18201467394828796 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q25261 |
| concepts[5].display_name | Meteorology |
| concepts[6].id | https://openalex.org/C121332964 |
| concepts[6].level | 0 |
| concepts[6].score | 0.17540904879570007 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q413 |
| concepts[6].display_name | Physics |
| concepts[7].id | https://openalex.org/C126314574 |
| concepts[7].level | 2 |
| concepts[7].score | 0.07973635196685791 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q2364111 |
| concepts[7].display_name | Air quality index |
| concepts[8].id | https://openalex.org/C165205528 |
| concepts[8].level | 1 |
| concepts[8].score | 0.07053419947624207 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q83371 |
| concepts[8].display_name | Seismology |
| concepts[9].id | https://openalex.org/C77928131 |
| concepts[9].level | 2 |
| concepts[9].score | 0.0 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q193343 |
| concepts[9].display_name | Tectonics |
| keywords[0].id | https://openalex.org/keywords/inversion |
| keywords[0].score | 0.6609039306640625 |
| keywords[0].display_name | Inversion (geology) |
| keywords[1].id | https://openalex.org/keywords/cmaq |
| keywords[1].score | 0.619806170463562 |
| keywords[1].display_name | CMAQ |
| keywords[2].id | https://openalex.org/keywords/environmental-science |
| keywords[2].score | 0.43077582120895386 |
| keywords[2].display_name | Environmental science |
| keywords[3].id | https://openalex.org/keywords/computer-science |
| keywords[3].score | 0.40733087062835693 |
| keywords[3].display_name | Computer science |
| keywords[4].id | https://openalex.org/keywords/geology |
| keywords[4].score | 0.21026384830474854 |
| keywords[4].display_name | Geology |
| keywords[5].id | https://openalex.org/keywords/meteorology |
| keywords[5].score | 0.18201467394828796 |
| keywords[5].display_name | Meteorology |
| keywords[6].id | https://openalex.org/keywords/physics |
| keywords[6].score | 0.17540904879570007 |
| keywords[6].display_name | Physics |
| keywords[7].id | https://openalex.org/keywords/air-quality-index |
| keywords[7].score | 0.07973635196685791 |
| keywords[7].display_name | Air quality index |
| keywords[8].id | https://openalex.org/keywords/seismology |
| keywords[8].score | 0.07053419947624207 |
| keywords[8].display_name | Seismology |
| language | en |
| locations[0].id | doi:10.5194/egusphere-egu24-2763 |
| locations[0].is_oa | True |
| locations[0].source | |
| locations[0].license | cc-by |
| locations[0].pdf_url | |
| locations[0].version | acceptedVersion |
| locations[0].raw_type | posted-content |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | https://doi.org/10.5194/egusphere-egu24-2763 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5089920238 |
| authorships[0].author.orcid | https://orcid.org/0000-0003-3003-5549 |
| authorships[0].author.display_name | Congwu Huang |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Congwu Huang |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5062855658 |
| authorships[1].author.orcid | https://orcid.org/0000-0001-9599-3874 |
| authorships[1].author.display_name | Tijian Wang |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Tijian Wang |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5087011161 |
| authorships[2].author.orcid | https://orcid.org/0000-0003-4461-9481 |
| authorships[2].author.display_name | Tao Niu |
| authorships[2].author_position | last |
| authorships[2].raw_author_name | Tao Niu |
| authorships[2].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.5194/egusphere-egu24-2763 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Study on the 3DVar emission inversion method combined with machine learning in CMAQ |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T14158 |
| primary_topic.field.id | https://openalex.org/fields/22 |
| primary_topic.field.display_name | Engineering |
| primary_topic.score | 0.9254999756813049 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2208 |
| primary_topic.subfield.display_name | Electrical and Electronic Engineering |
| primary_topic.display_name | Optical Systems and Laser Technology |
| related_works | https://openalex.org/W2748952813, https://openalex.org/W2979347708, https://openalex.org/W4250088279, https://openalex.org/W3082720439, https://openalex.org/W1982564595, https://openalex.org/W4317914702, https://openalex.org/W2119058330, https://openalex.org/W2058560210, https://openalex.org/W1994266434, https://openalex.org/W1926972755 |
| cited_by_count | 0 |
| locations_count | 1 |
| best_oa_location.id | doi:10.5194/egusphere-egu24-2763 |
| best_oa_location.is_oa | True |
| best_oa_location.source | |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | |
| best_oa_location.version | acceptedVersion |
| best_oa_location.raw_type | posted-content |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | https://doi.org/10.5194/egusphere-egu24-2763 |
| primary_location.id | doi:10.5194/egusphere-egu24-2763 |
| primary_location.is_oa | True |
| primary_location.source | |
| primary_location.license | cc-by |
| primary_location.pdf_url | |
| primary_location.version | acceptedVersion |
| primary_location.raw_type | posted-content |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | https://doi.org/10.5194/egusphere-egu24-2763 |
| publication_date | 2024-03-08 |
| publication_year | 2024 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 212 |
| abstract_inverted_index.15 | 116 |
| abstract_inverted_index.O3 | 74 |
| abstract_inverted_index.an | 121 |
| abstract_inverted_index.as | 120 |
| abstract_inverted_index.be | 211, 225 |
| abstract_inverted_index.by | 157, 165, 184, 194 |
| abstract_inverted_index.in | 7, 36, 110, 218, 227 |
| abstract_inverted_index.is | 4 |
| abstract_inverted_index.of | 18, 89, 92, 103, 175, 204 |
| abstract_inverted_index.on | 33, 148, 172 |
| abstract_inverted_index.to | 56, 62, 70, 117, 210, 215, 224 |
| abstract_inverted_index.2%, | 159 |
| abstract_inverted_index.30, | 118 |
| abstract_inverted_index.Air | 41 |
| abstract_inverted_index.BTH | 112 |
| abstract_inverted_index.NO2 | 76 |
| abstract_inverted_index.NOx | 78 |
| abstract_inverted_index.O3, | 177 |
| abstract_inverted_index.O3. | 104 |
| abstract_inverted_index.The | 0, 45, 73 |
| abstract_inverted_index.air | 1, 8, 19, 107 |
| abstract_inverted_index.and | 11, 75, 79, 125, 150, 160, 188, 201, 220 |
| abstract_inverted_index.are | 82 |
| abstract_inverted_index.has | 144, 169, 207 |
| abstract_inverted_index.the | 16, 25, 58, 63, 90, 93, 100, 106, 111, 136, 141, 153, 161, 173, 179, 189, 228 |
| abstract_inverted_index.way | 214 |
| abstract_inverted_index.(The | 38 |
| abstract_inverted_index.10%, | 196 |
| abstract_inverted_index.13%, | 187 |
| abstract_inverted_index.14%, | 158 |
| abstract_inverted_index.2019 | 119 |
| abstract_inverted_index.29%, | 186 |
| abstract_inverted_index.31%, | 166 |
| abstract_inverted_index.33%. | 197 |
| abstract_inverted_index.34%; | 167 |
| abstract_inverted_index.40%, | 185 |
| abstract_inverted_index.49%, | 195 |
| abstract_inverted_index.CMAQ | 37, 219 |
| abstract_inverted_index.NO2, | 151 |
| abstract_inverted_index.PM10 | 149 |
| abstract_inverted_index.SO2, | 178 |
| abstract_inverted_index.This | 22, 96, 198 |
| abstract_inverted_index.VOCs | 80 |
| abstract_inverted_index.been | 208 |
| abstract_inverted_index.done | 226 |
| abstract_inverted_index.from | 114 |
| abstract_inverted_index.good | 213 |
| abstract_inverted_index.much | 223 |
| abstract_inverted_index.out. | 133 |
| abstract_inverted_index.were | 54, 131, 182, 192 |
| abstract_inverted_index.with | 135, 152 |
| abstract_inverted_index.(Nud) | 127 |
| abstract_inverted_index.3DVar | 26, 69 |
| abstract_inverted_index.based | 32 |
| abstract_inverted_index.model | 3 |
| abstract_inverted_index.still | 221 |
| abstract_inverted_index.trees | 48 |
| abstract_inverted_index.using | 84 |
| abstract_inverted_index.(3DEx) | 124 |
| abstract_inverted_index.PM2.5, | 176 |
| abstract_inverted_index.Taking | 105 |
| abstract_inverted_index.adjust | 216 |
| abstract_inverted_index.better | 145, 170 |
| abstract_inverted_index.caried | 132 |
| abstract_inverted_index.errors | 155, 163, 181, 191 |
| abstract_inverted_index.impact | 15 |
| abstract_inverted_index.method | 31, 97, 143, 206 |
| abstract_inverted_index.proved | 209 |
| abstract_inverted_index.region | 113 |
| abstract_inverted_index.taking | 87 |
| abstract_inverted_index.(NODA), | 140 |
| abstract_inverted_index.January | 115 |
| abstract_inverted_index.Nudging | 126, 142 |
| abstract_inverted_index.Quality | 42 |
| abstract_inverted_index.ability | 102 |
| abstract_inverted_index.account | 88 |
| abstract_inverted_index.convert | 57 |
| abstract_inverted_index.effects | 147, 171 |
| abstract_inverted_index.future. | 229 |
| abstract_inverted_index.machine | 34, 50, 85 |
| abstract_inverted_index.method) | 49 |
| abstract_inverted_index.modeled | 83 |
| abstract_inverted_index.models. | 21 |
| abstract_inverted_index.process | 109 |
| abstract_inverted_index.quality | 2, 20 |
| abstract_inverted_index.reduced | 156, 164, 183, 193 |
| abstract_inverted_index.remains | 222 |
| abstract_inverted_index.studied | 24 |
| abstract_inverted_index.without | 138 |
| abstract_inverted_index.Compared | 134 |
| abstract_inverted_index.accuracy | 17 |
| abstract_inverted_index.emission | 29, 65, 71, 128 |
| abstract_inverted_index.example, | 122 |
| abstract_inverted_index.extended | 68 |
| abstract_inverted_index.improved | 99 |
| abstract_inverted_index.learning | 35, 51 |
| abstract_inverted_index.matrixes | 53 |
| abstract_inverted_index.modeling | 43 |
| abstract_inverted_index.regional | 154, 180 |
| abstract_inverted_index.research | 23 |
| abstract_inverted_index.system). | 44 |
| abstract_inverted_index.temporal | 162, 190 |
| abstract_inverted_index.Community | 39 |
| abstract_inverted_index.Emissions | 13 |
| abstract_inverted_index.emissions | 81, 217 |
| abstract_inverted_index.framework | 203 |
| abstract_inverted_index.important | 6 |
| abstract_inverted_index.intensity | 66 |
| abstract_inverted_index.inversion | 30 |
| abstract_inverted_index.learning, | 86 |
| abstract_inverted_index.pollutant | 59 |
| abstract_inverted_index.pollution | 9, 108 |
| abstract_inverted_index.ExRT-3DVar | 123, 168, 205 |
| abstract_inverted_index.Multiscale | 40 |
| abstract_inverted_index.conversion | 52 |
| abstract_inverted_index.inversion. | 72 |
| abstract_inverted_index.processes. | 95 |
| abstract_inverted_index.randomized | 47 |
| abstract_inverted_index.simulation | 101, 137 |
| abstract_inverted_index.O3-NOx-VOCs | 94 |
| abstract_inverted_index.efficiently | 200 |
| abstract_inverted_index.established | 55 |
| abstract_inverted_index.experiments | 130 |
| abstract_inverted_index.forecasting | 10 |
| abstract_inverted_index.innovations | 61 |
| abstract_inverted_index.simplicity, | 199 |
| abstract_inverted_index.assimilation | 129, 139, 146, 174 |
| abstract_inverted_index.controlling. | 12 |
| abstract_inverted_index.increasingly | 5 |
| abstract_inverted_index.innovations, | 67 |
| abstract_inverted_index.nonlinearity | 91 |
| abstract_inverted_index.variational) | 28 |
| abstract_inverted_index.concentration | 60 |
| abstract_inverted_index.corresponding | 64 |
| abstract_inverted_index.extensibility | 202 |
| abstract_inverted_index.significantly | 14, 98 |
| abstract_inverted_index.ExRT(extremely | 46 |
| abstract_inverted_index.concentration, | 77 |
| abstract_inverted_index.(three-dimensional | 27 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 3 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/7 |
| sustainable_development_goals[0].score | 0.4399999976158142 |
| sustainable_development_goals[0].display_name | Affordable and clean energy |
| citation_normalized_percentile.value | 0.02398975 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |