Study on the Extraction of Topsoil-Loss Areas of Cultivated Land Based on Multi-Source Remote Sensing Data Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.3390/rs17030547
Soil, a crucial natural resource and the cornerstone of agriculture, profoundly impacts crop growth, quality, and yield. However, soil degradation affects over one-third of global land, with topsoil loss emerging as a significant form of this degradation, posing a grave threat to agricultural sustainability and socio-economic development. Therefore, accurate monitoring of topsoil-loss distribution is essential for formulating effective soil protection and management strategies. Traditional survey methods are limited by time-consuming and labor-intensive processes, high costs, and complex data processing. These limitations make it particularly challenging to meet the demands of large-scale research and efficient information processing. Therefore, it is imperative to develop a more efficient and accurate extraction method. This study focuses on the Heshan Farm in Heilongjiang Province, China, as the research subject and utilizes remote sensing technology and machine learning methods. It introduces multi-source data, including Sentinel-2 satellite imagery and Digital Elevation Model (DEM) data, to design four extraction schemes. (1) spectral feature extraction; (2) spectral feature + topographic feature extraction; (3) spectral feature + index extraction; (4) spectral feature + topographic feature + index extraction. Models for topsoil loss identification based on Random Forest (RF) and Support Vector Machine (SVM) algorithms are developed, and the Particle Swarm Optimization (PSO) algorithm is introduced to optimize the models. The performance of the models is evaluated using overall accuracy and Kappa coefficient indicators. The results show that Scheme 4, which integrates spectral features, topographic features, and various indices, performs the best in extraction effects. The RF model demonstrates higher classification accuracy than the SVM model. The optimized PSO-RF and PSO-SVM models show significant improvements in extraction accuracy, especially the PSO-RF model, with an overall accuracy of 0.97 and a Kappa coefficient of 0.94. The PSO-RF model using Scheme 4 improves OA by 34.72% and Kappa by 38.81% compared to the RF model in Scheme 1. Topsoil loss has a significant negative impact on crop growth, severely restricting the normal growth and development of crops. This study provides an efficient technical means for monitoring soil degradation in black-soil regions and offers a scientific basis for formulating effective agricultural ecological protection strategies, thereby promoting the sustainable management of soil resources.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.3390/rs17030547
- OA Status
- gold
- Cited By
- 4
- References
- 66
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4407223772
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4407223772Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.3390/rs17030547Digital Object Identifier
- Title
-
Study on the Extraction of Topsoil-Loss Areas of Cultivated Land Based on Multi-Source Remote Sensing DataWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-02-06Full publication date if available
- Authors
-
Xinle Zhang, Chuan Qin, S. Ma, Jiming Liu, Yiang Wang, Huanjun Liu, Zeyu An, Yuanye MaList of authors in order
- Landing page
-
https://doi.org/10.3390/rs17030547Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.3390/rs17030547Direct OA link when available
- Concepts
-
Topsoil, Extraction (chemistry), Remote sensing, Environmental science, Cultivated land, Soil science, Land use, Geology, Soil water, Civil engineering, Chemistry, Engineering, ChromatographyTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
4Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 4Per-year citation counts (last 5 years)
- References (count)
-
66Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4407223772 |
|---|---|
| doi | https://doi.org/10.3390/rs17030547 |
| ids.doi | https://doi.org/10.3390/rs17030547 |
| ids.openalex | https://openalex.org/W4407223772 |
| fwci | 12.13416295 |
| type | article |
| title | Study on the Extraction of Topsoil-Loss Areas of Cultivated Land Based on Multi-Source Remote Sensing Data |
| awards[0].id | https://openalex.org/G6867266295 |
| awards[0].funder_id | https://openalex.org/F4320335777 |
| awards[0].display_name | |
| awards[0].funder_award_id | 2024YFD1501100 |
| awards[0].funder_display_name | National Key Research and Development Program of China |
| awards[1].id | https://openalex.org/G2041864388 |
| awards[1].funder_id | https://openalex.org/F4320335777 |
| awards[1].display_name | |
| awards[1].funder_award_id | 2021YFD1500100 |
| awards[1].funder_display_name | National Key Research and Development Program of China |
| biblio.issue | 3 |
| biblio.volume | 17 |
| biblio.last_page | 547 |
| biblio.first_page | 547 |
| topics[0].id | https://openalex.org/T13890 |
| topics[0].field.id | https://openalex.org/fields/19 |
| topics[0].field.display_name | Earth and Planetary Sciences |
| topics[0].score | 0.9929999709129333 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1902 |
| topics[0].subfield.display_name | Atmospheric Science |
| topics[0].display_name | Remote Sensing and Land Use |
| topics[1].id | https://openalex.org/T12467 |
| topics[1].field.id | https://openalex.org/fields/23 |
| topics[1].field.display_name | Environmental Science |
| topics[1].score | 0.9909999966621399 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2308 |
| topics[1].subfield.display_name | Management, Monitoring, Policy and Law |
| topics[1].display_name | Rangeland Management and Livestock Ecology |
| topics[2].id | https://openalex.org/T13203 |
| topics[2].field.id | https://openalex.org/fields/23 |
| topics[2].field.display_name | Environmental Science |
| topics[2].score | 0.9817000031471252 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2306 |
| topics[2].subfield.display_name | Global and Planetary Change |
| topics[2].display_name | Environmental Changes in China |
| funders[0].id | https://openalex.org/F4320335777 |
| funders[0].ror | |
| funders[0].display_name | National Key Research and Development Program of China |
| is_xpac | False |
| apc_list.value | 2500 |
| apc_list.currency | CHF |
| apc_list.value_usd | 2707 |
| apc_paid.value | 2500 |
| apc_paid.currency | CHF |
| apc_paid.value_usd | 2707 |
| concepts[0].id | https://openalex.org/C20529654 |
| concepts[0].level | 3 |
| concepts[0].score | 0.7184190154075623 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q1247456 |
| concepts[0].display_name | Topsoil |
| concepts[1].id | https://openalex.org/C4725764 |
| concepts[1].level | 2 |
| concepts[1].score | 0.6250714063644409 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q844704 |
| concepts[1].display_name | Extraction (chemistry) |
| concepts[2].id | https://openalex.org/C62649853 |
| concepts[2].level | 1 |
| concepts[2].score | 0.5839663147926331 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q199687 |
| concepts[2].display_name | Remote sensing |
| concepts[3].id | https://openalex.org/C39432304 |
| concepts[3].level | 0 |
| concepts[3].score | 0.5447510480880737 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q188847 |
| concepts[3].display_name | Environmental science |
| concepts[4].id | https://openalex.org/C2988907029 |
| concepts[4].level | 3 |
| concepts[4].score | 0.41515517234802246 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q11451 |
| concepts[4].display_name | Cultivated land |
| concepts[5].id | https://openalex.org/C159390177 |
| concepts[5].level | 1 |
| concepts[5].score | 0.2790335416793823 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q9161265 |
| concepts[5].display_name | Soil science |
| concepts[6].id | https://openalex.org/C4792198 |
| concepts[6].level | 2 |
| concepts[6].score | 0.254663348197937 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q1165944 |
| concepts[6].display_name | Land use |
| concepts[7].id | https://openalex.org/C127313418 |
| concepts[7].level | 0 |
| concepts[7].score | 0.1894642412662506 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q1069 |
| concepts[7].display_name | Geology |
| concepts[8].id | https://openalex.org/C159750122 |
| concepts[8].level | 2 |
| concepts[8].score | 0.11179348826408386 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q96621023 |
| concepts[8].display_name | Soil water |
| concepts[9].id | https://openalex.org/C147176958 |
| concepts[9].level | 1 |
| concepts[9].score | 0.05293312668800354 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q77590 |
| concepts[9].display_name | Civil engineering |
| concepts[10].id | https://openalex.org/C185592680 |
| concepts[10].level | 0 |
| concepts[10].score | 0.0 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q2329 |
| concepts[10].display_name | Chemistry |
| concepts[11].id | https://openalex.org/C127413603 |
| concepts[11].level | 0 |
| concepts[11].score | 0.0 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q11023 |
| concepts[11].display_name | Engineering |
| concepts[12].id | https://openalex.org/C43617362 |
| concepts[12].level | 1 |
| concepts[12].score | 0.0 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q170050 |
| concepts[12].display_name | Chromatography |
| keywords[0].id | https://openalex.org/keywords/topsoil |
| keywords[0].score | 0.7184190154075623 |
| keywords[0].display_name | Topsoil |
| keywords[1].id | https://openalex.org/keywords/extraction |
| keywords[1].score | 0.6250714063644409 |
| keywords[1].display_name | Extraction (chemistry) |
| keywords[2].id | https://openalex.org/keywords/remote-sensing |
| keywords[2].score | 0.5839663147926331 |
| keywords[2].display_name | Remote sensing |
| keywords[3].id | https://openalex.org/keywords/environmental-science |
| keywords[3].score | 0.5447510480880737 |
| keywords[3].display_name | Environmental science |
| keywords[4].id | https://openalex.org/keywords/cultivated-land |
| keywords[4].score | 0.41515517234802246 |
| keywords[4].display_name | Cultivated land |
| keywords[5].id | https://openalex.org/keywords/soil-science |
| keywords[5].score | 0.2790335416793823 |
| keywords[5].display_name | Soil science |
| keywords[6].id | https://openalex.org/keywords/land-use |
| keywords[6].score | 0.254663348197937 |
| keywords[6].display_name | Land use |
| keywords[7].id | https://openalex.org/keywords/geology |
| keywords[7].score | 0.1894642412662506 |
| keywords[7].display_name | Geology |
| keywords[8].id | https://openalex.org/keywords/soil-water |
| keywords[8].score | 0.11179348826408386 |
| keywords[8].display_name | Soil water |
| keywords[9].id | https://openalex.org/keywords/civil-engineering |
| keywords[9].score | 0.05293312668800354 |
| keywords[9].display_name | Civil engineering |
| language | en |
| locations[0].id | doi:10.3390/rs17030547 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S43295729 |
| locations[0].source.issn | 2072-4292 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2072-4292 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | Remote Sensing |
| locations[0].source.host_organization | https://openalex.org/P4310310987 |
| locations[0].source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310310987 |
| locations[0].source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| locations[0].license | cc-by |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Remote Sensing |
| locations[0].landing_page_url | https://doi.org/10.3390/rs17030547 |
| locations[1].id | pmh:oai:doaj.org/article:d3af818093124bb2afc944b0b6c9f11d |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306401280 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[1].source.host_organization | |
| locations[1].source.host_organization_name | |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | Remote Sensing, Vol 17, Iss 3, p 547 (2025) |
| locations[1].landing_page_url | https://doaj.org/article/d3af818093124bb2afc944b0b6c9f11d |
| indexed_in | crossref, doaj |
| authorships[0].author.id | https://openalex.org/A5005373097 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-4768-1881 |
| authorships[0].author.display_name | Xinle Zhang |
| authorships[0].countries | CN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I4210152006 |
| authorships[0].affiliations[0].raw_affiliation_string | College of Information Technology, Jilin Agricultural University, Changchun 130118, China |
| authorships[0].institutions[0].id | https://openalex.org/I4210152006 |
| authorships[0].institutions[0].ror | https://ror.org/05dmhhd41 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I4210152006 |
| authorships[0].institutions[0].country_code | CN |
| authorships[0].institutions[0].display_name | Jilin Agricultural University |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Xinle Zhang |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | College of Information Technology, Jilin Agricultural University, Changchun 130118, China |
| authorships[1].author.id | https://openalex.org/A5102883290 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-5354-8630 |
| authorships[1].author.display_name | Chuan Qin |
| authorships[1].countries | CN |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I19820366, https://openalex.org/I4210101301 |
| authorships[1].affiliations[0].raw_affiliation_string | State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China |
| authorships[1].affiliations[1].institution_ids | https://openalex.org/I4210152006 |
| authorships[1].affiliations[1].raw_affiliation_string | College of Information Technology, Jilin Agricultural University, Changchun 130118, China |
| authorships[1].institutions[0].id | https://openalex.org/I19820366 |
| authorships[1].institutions[0].ror | https://ror.org/034t30j35 |
| authorships[1].institutions[0].type | government |
| authorships[1].institutions[0].lineage | https://openalex.org/I19820366 |
| authorships[1].institutions[0].country_code | CN |
| authorships[1].institutions[0].display_name | Chinese Academy of Sciences |
| authorships[1].institutions[1].id | https://openalex.org/I4210152006 |
| authorships[1].institutions[1].ror | https://ror.org/05dmhhd41 |
| authorships[1].institutions[1].type | education |
| authorships[1].institutions[1].lineage | https://openalex.org/I4210152006 |
| authorships[1].institutions[1].country_code | CN |
| authorships[1].institutions[1].display_name | Jilin Agricultural University |
| authorships[1].institutions[2].id | https://openalex.org/I4210101301 |
| authorships[1].institutions[2].ror | https://ror.org/01a9z1q73 |
| authorships[1].institutions[2].type | facility |
| authorships[1].institutions[2].lineage | https://openalex.org/I19820366, https://openalex.org/I4210101301 |
| authorships[1].institutions[2].country_code | CN |
| authorships[1].institutions[2].display_name | Northeast Institute of Geography and Agroecology |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Chuan Qin |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | College of Information Technology, Jilin Agricultural University, Changchun 130118, China, State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China |
| authorships[2].author.id | https://openalex.org/A5043810901 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-6308-0971 |
| authorships[2].author.display_name | S. Ma |
| authorships[2].countries | CN |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I19820366, https://openalex.org/I4210101301 |
| authorships[2].affiliations[0].raw_affiliation_string | State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China |
| authorships[2].institutions[0].id | https://openalex.org/I19820366 |
| authorships[2].institutions[0].ror | https://ror.org/034t30j35 |
| authorships[2].institutions[0].type | government |
| authorships[2].institutions[0].lineage | https://openalex.org/I19820366 |
| authorships[2].institutions[0].country_code | CN |
| authorships[2].institutions[0].display_name | Chinese Academy of Sciences |
| authorships[2].institutions[1].id | https://openalex.org/I4210101301 |
| authorships[2].institutions[1].ror | https://ror.org/01a9z1q73 |
| authorships[2].institutions[1].type | facility |
| authorships[2].institutions[1].lineage | https://openalex.org/I19820366, https://openalex.org/I4210101301 |
| authorships[2].institutions[1].country_code | CN |
| authorships[2].institutions[1].display_name | Northeast Institute of Geography and Agroecology |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Shinai Ma |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China |
| authorships[3].author.id | https://openalex.org/A5062375227 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-8669-9064 |
| authorships[3].author.display_name | Jiming Liu |
| authorships[3].countries | CN |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I19820366, https://openalex.org/I4210101301 |
| authorships[3].affiliations[0].raw_affiliation_string | State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China |
| authorships[3].affiliations[1].institution_ids | https://openalex.org/I4210152006 |
| authorships[3].affiliations[1].raw_affiliation_string | College of Information Technology, Jilin Agricultural University, Changchun 130118, China |
| authorships[3].institutions[0].id | https://openalex.org/I19820366 |
| authorships[3].institutions[0].ror | https://ror.org/034t30j35 |
| authorships[3].institutions[0].type | government |
| authorships[3].institutions[0].lineage | https://openalex.org/I19820366 |
| authorships[3].institutions[0].country_code | CN |
| authorships[3].institutions[0].display_name | Chinese Academy of Sciences |
| authorships[3].institutions[1].id | https://openalex.org/I4210152006 |
| authorships[3].institutions[1].ror | https://ror.org/05dmhhd41 |
| authorships[3].institutions[1].type | education |
| authorships[3].institutions[1].lineage | https://openalex.org/I4210152006 |
| authorships[3].institutions[1].country_code | CN |
| authorships[3].institutions[1].display_name | Jilin Agricultural University |
| authorships[3].institutions[2].id | https://openalex.org/I4210101301 |
| authorships[3].institutions[2].ror | https://ror.org/01a9z1q73 |
| authorships[3].institutions[2].type | facility |
| authorships[3].institutions[2].lineage | https://openalex.org/I19820366, https://openalex.org/I4210101301 |
| authorships[3].institutions[2].country_code | CN |
| authorships[3].institutions[2].display_name | Northeast Institute of Geography and Agroecology |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Jiming Liu |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | College of Information Technology, Jilin Agricultural University, Changchun 130118, China, State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China |
| authorships[4].author.id | https://openalex.org/A5057209102 |
| authorships[4].author.orcid | |
| authorships[4].author.display_name | Yiang Wang |
| authorships[4].countries | CN |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I19820366, https://openalex.org/I4210101301 |
| authorships[4].affiliations[0].raw_affiliation_string | State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China |
| authorships[4].institutions[0].id | https://openalex.org/I19820366 |
| authorships[4].institutions[0].ror | https://ror.org/034t30j35 |
| authorships[4].institutions[0].type | government |
| authorships[4].institutions[0].lineage | https://openalex.org/I19820366 |
| authorships[4].institutions[0].country_code | CN |
| authorships[4].institutions[0].display_name | Chinese Academy of Sciences |
| authorships[4].institutions[1].id | https://openalex.org/I4210101301 |
| authorships[4].institutions[1].ror | https://ror.org/01a9z1q73 |
| authorships[4].institutions[1].type | facility |
| authorships[4].institutions[1].lineage | https://openalex.org/I19820366, https://openalex.org/I4210101301 |
| authorships[4].institutions[1].country_code | CN |
| authorships[4].institutions[1].display_name | Northeast Institute of Geography and Agroecology |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Yiang Wang |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China |
| authorships[5].author.id | https://openalex.org/A5023722126 |
| authorships[5].author.orcid | https://orcid.org/0000-0002-7671-7863 |
| authorships[5].author.display_name | Huanjun Liu |
| authorships[5].countries | CN |
| authorships[5].affiliations[0].institution_ids | https://openalex.org/I19820366, https://openalex.org/I4210101301 |
| authorships[5].affiliations[0].raw_affiliation_string | State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China |
| authorships[5].institutions[0].id | https://openalex.org/I19820366 |
| authorships[5].institutions[0].ror | https://ror.org/034t30j35 |
| authorships[5].institutions[0].type | government |
| authorships[5].institutions[0].lineage | https://openalex.org/I19820366 |
| authorships[5].institutions[0].country_code | CN |
| authorships[5].institutions[0].display_name | Chinese Academy of Sciences |
| authorships[5].institutions[1].id | https://openalex.org/I4210101301 |
| authorships[5].institutions[1].ror | https://ror.org/01a9z1q73 |
| authorships[5].institutions[1].type | facility |
| authorships[5].institutions[1].lineage | https://openalex.org/I19820366, https://openalex.org/I4210101301 |
| authorships[5].institutions[1].country_code | CN |
| authorships[5].institutions[1].display_name | Northeast Institute of Geography and Agroecology |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Huanjun Liu |
| authorships[5].is_corresponding | False |
| authorships[5].raw_affiliation_strings | State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China |
| authorships[6].author.id | https://openalex.org/A5112628508 |
| authorships[6].author.orcid | |
| authorships[6].author.display_name | Zeyu An |
| authorships[6].countries | CN |
| authorships[6].affiliations[0].institution_ids | https://openalex.org/I4210152006 |
| authorships[6].affiliations[0].raw_affiliation_string | College of Information Technology, Jilin Agricultural University, Changchun 130118, China |
| authorships[6].affiliations[1].institution_ids | https://openalex.org/I19820366, https://openalex.org/I4210101301 |
| authorships[6].affiliations[1].raw_affiliation_string | State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China |
| authorships[6].institutions[0].id | https://openalex.org/I19820366 |
| authorships[6].institutions[0].ror | https://ror.org/034t30j35 |
| authorships[6].institutions[0].type | government |
| authorships[6].institutions[0].lineage | https://openalex.org/I19820366 |
| authorships[6].institutions[0].country_code | CN |
| authorships[6].institutions[0].display_name | Chinese Academy of Sciences |
| authorships[6].institutions[1].id | https://openalex.org/I4210152006 |
| authorships[6].institutions[1].ror | https://ror.org/05dmhhd41 |
| authorships[6].institutions[1].type | education |
| authorships[6].institutions[1].lineage | https://openalex.org/I4210152006 |
| authorships[6].institutions[1].country_code | CN |
| authorships[6].institutions[1].display_name | Jilin Agricultural University |
| authorships[6].institutions[2].id | https://openalex.org/I4210101301 |
| authorships[6].institutions[2].ror | https://ror.org/01a9z1q73 |
| authorships[6].institutions[2].type | facility |
| authorships[6].institutions[2].lineage | https://openalex.org/I19820366, https://openalex.org/I4210101301 |
| authorships[6].institutions[2].country_code | CN |
| authorships[6].institutions[2].display_name | Northeast Institute of Geography and Agroecology |
| authorships[6].author_position | middle |
| authorships[6].raw_author_name | Zeyu An |
| authorships[6].is_corresponding | False |
| authorships[6].raw_affiliation_strings | College of Information Technology, Jilin Agricultural University, Changchun 130118, China, State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China |
| authorships[7].author.id | https://openalex.org/A5084741637 |
| authorships[7].author.orcid | https://orcid.org/0000-0001-5291-9367 |
| authorships[7].author.display_name | Yuanye Ma |
| authorships[7].countries | CN |
| authorships[7].affiliations[0].institution_ids | https://openalex.org/I19820366, https://openalex.org/I4210101301 |
| authorships[7].affiliations[0].raw_affiliation_string | State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China |
| authorships[7].affiliations[1].institution_ids | https://openalex.org/I4210152006 |
| authorships[7].affiliations[1].raw_affiliation_string | College of Information Technology, Jilin Agricultural University, Changchun 130118, China |
| authorships[7].institutions[0].id | https://openalex.org/I19820366 |
| authorships[7].institutions[0].ror | https://ror.org/034t30j35 |
| authorships[7].institutions[0].type | government |
| authorships[7].institutions[0].lineage | https://openalex.org/I19820366 |
| authorships[7].institutions[0].country_code | CN |
| authorships[7].institutions[0].display_name | Chinese Academy of Sciences |
| authorships[7].institutions[1].id | https://openalex.org/I4210152006 |
| authorships[7].institutions[1].ror | https://ror.org/05dmhhd41 |
| authorships[7].institutions[1].type | education |
| authorships[7].institutions[1].lineage | https://openalex.org/I4210152006 |
| authorships[7].institutions[1].country_code | CN |
| authorships[7].institutions[1].display_name | Jilin Agricultural University |
| authorships[7].institutions[2].id | https://openalex.org/I4210101301 |
| authorships[7].institutions[2].ror | https://ror.org/01a9z1q73 |
| authorships[7].institutions[2].type | facility |
| authorships[7].institutions[2].lineage | https://openalex.org/I19820366, https://openalex.org/I4210101301 |
| authorships[7].institutions[2].country_code | CN |
| authorships[7].institutions[2].display_name | Northeast Institute of Geography and Agroecology |
| authorships[7].author_position | last |
| authorships[7].raw_author_name | Yihan Ma |
| authorships[7].is_corresponding | False |
| authorships[7].raw_affiliation_strings | College of Information Technology, Jilin Agricultural University, Changchun 130118, China, State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.3390/rs17030547 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Study on the Extraction of Topsoil-Loss Areas of Cultivated Land Based on Multi-Source Remote Sensing Data |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T13890 |
| primary_topic.field.id | https://openalex.org/fields/19 |
| primary_topic.field.display_name | Earth and Planetary Sciences |
| primary_topic.score | 0.9929999709129333 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1902 |
| primary_topic.subfield.display_name | Atmospheric Science |
| primary_topic.display_name | Remote Sensing and Land Use |
| related_works | https://openalex.org/W2357133576, https://openalex.org/W2016209990, https://openalex.org/W4384523843, https://openalex.org/W2350228812, https://openalex.org/W568858832, https://openalex.org/W2060677783, https://openalex.org/W1976604333, https://openalex.org/W2379486634, https://openalex.org/W1881348922, https://openalex.org/W4292429924 |
| cited_by_count | 4 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 4 |
| locations_count | 2 |
| best_oa_location.id | doi:10.3390/rs17030547 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S43295729 |
| best_oa_location.source.issn | 2072-4292 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2072-4292 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | Remote Sensing |
| best_oa_location.source.host_organization | https://openalex.org/P4310310987 |
| best_oa_location.source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| best_oa_location.source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Remote Sensing |
| best_oa_location.landing_page_url | https://doi.org/10.3390/rs17030547 |
| primary_location.id | doi:10.3390/rs17030547 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S43295729 |
| primary_location.source.issn | 2072-4292 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2072-4292 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | Remote Sensing |
| primary_location.source.host_organization | https://openalex.org/P4310310987 |
| primary_location.source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| primary_location.source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| primary_location.license | cc-by |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Remote Sensing |
| primary_location.landing_page_url | https://doi.org/10.3390/rs17030547 |
| publication_date | 2025-02-06 |
| publication_year | 2025 |
| referenced_works | https://openalex.org/W2050914570, https://openalex.org/W3081223604, https://openalex.org/W1994413571, https://openalex.org/W4301432335, https://openalex.org/W1650912349, https://openalex.org/W2864012982, https://openalex.org/W3120306931, https://openalex.org/W2964485797, https://openalex.org/W4226061473, https://openalex.org/W4311322337, https://openalex.org/W4393971613, https://openalex.org/W4323664090, https://openalex.org/W3042189766, https://openalex.org/W6854834771, https://openalex.org/W2917116492, https://openalex.org/W4323922691, https://openalex.org/W3131582546, https://openalex.org/W4402713391, https://openalex.org/W4389623216, https://openalex.org/W3213426859, https://openalex.org/W4401609919, https://openalex.org/W2950851751, https://openalex.org/W3113466571, https://openalex.org/W3123219997, https://openalex.org/W4281663376, https://openalex.org/W2329645895, https://openalex.org/W2884571987, https://openalex.org/W4390236251, https://openalex.org/W4404565604, https://openalex.org/W3088162569, https://openalex.org/W3021467062, https://openalex.org/W4214754834, https://openalex.org/W2021090656, https://openalex.org/W4297110361, https://openalex.org/W7005635524, https://openalex.org/W2962914760, https://openalex.org/W2126400231, https://openalex.org/W3217144359, https://openalex.org/W6774894882, https://openalex.org/W3034053233, https://openalex.org/W4298110875, https://openalex.org/W2621189771, https://openalex.org/W1852373469, https://openalex.org/W180166045, https://openalex.org/W2914268330, https://openalex.org/W3201690527, https://openalex.org/W4283032886, https://openalex.org/W2893324711, https://openalex.org/W3176377354, https://openalex.org/W2155152860, https://openalex.org/W6665407894, https://openalex.org/W1526791177, https://openalex.org/W2911964244, https://openalex.org/W4392948943, https://openalex.org/W4239510810, https://openalex.org/W2136251662, https://openalex.org/W6748277205, https://openalex.org/W6676058556, https://openalex.org/W923036963, https://openalex.org/W2971884887, https://openalex.org/W1986738039, https://openalex.org/W2782865993, https://openalex.org/W3010956531, https://openalex.org/W4384916235, https://openalex.org/W2057890933, https://openalex.org/W2743772587 |
| referenced_works_count | 66 |
| abstract_inverted_index.+ | 159, 166, 172, 175 |
| abstract_inverted_index.4 | 288 |
| abstract_inverted_index.a | 1, 31, 38, 102, 278, 308, 340 |
| abstract_inverted_index.1. | 304 |
| abstract_inverted_index.4, | 228 |
| abstract_inverted_index.It | 133 |
| abstract_inverted_index.OA | 290 |
| abstract_inverted_index.RF | 245, 300 |
| abstract_inverted_index.an | 272, 327 |
| abstract_inverted_index.as | 30, 120 |
| abstract_inverted_index.by | 68, 291, 295 |
| abstract_inverted_index.in | 116, 241, 264, 302, 335 |
| abstract_inverted_index.is | 53, 98, 203, 214 |
| abstract_inverted_index.it | 82, 97 |
| abstract_inverted_index.of | 8, 23, 34, 50, 89, 211, 275, 281, 322, 355 |
| abstract_inverted_index.on | 112, 184, 312 |
| abstract_inverted_index.to | 41, 85, 100, 147, 205, 298 |
| abstract_inverted_index.(1) | 152 |
| abstract_inverted_index.(2) | 156 |
| abstract_inverted_index.(3) | 163 |
| abstract_inverted_index.(4) | 169 |
| abstract_inverted_index.SVM | 253 |
| abstract_inverted_index.The | 209, 223, 244, 255, 283 |
| abstract_inverted_index.and | 5, 15, 44, 60, 70, 75, 92, 105, 124, 129, 141, 188, 196, 219, 235, 258, 277, 293, 320, 338 |
| abstract_inverted_index.are | 66, 194 |
| abstract_inverted_index.for | 55, 179, 331, 343 |
| abstract_inverted_index.has | 307 |
| abstract_inverted_index.the | 6, 87, 113, 121, 197, 207, 212, 239, 252, 268, 299, 317, 352 |
| abstract_inverted_index.(RF) | 187 |
| abstract_inverted_index.0.97 | 276 |
| abstract_inverted_index.Farm | 115 |
| abstract_inverted_index.This | 109, 324 |
| abstract_inverted_index.best | 240 |
| abstract_inverted_index.crop | 12, 313 |
| abstract_inverted_index.data | 77 |
| abstract_inverted_index.form | 33 |
| abstract_inverted_index.four | 149 |
| abstract_inverted_index.high | 73 |
| abstract_inverted_index.loss | 28, 181, 306 |
| abstract_inverted_index.make | 81 |
| abstract_inverted_index.meet | 86 |
| abstract_inverted_index.more | 103 |
| abstract_inverted_index.over | 21 |
| abstract_inverted_index.show | 225, 261 |
| abstract_inverted_index.soil | 18, 58, 333, 356 |
| abstract_inverted_index.than | 251 |
| abstract_inverted_index.that | 226 |
| abstract_inverted_index.this | 35 |
| abstract_inverted_index.with | 26, 271 |
| abstract_inverted_index.(DEM) | 145 |
| abstract_inverted_index.(PSO) | 201 |
| abstract_inverted_index.(SVM) | 192 |
| abstract_inverted_index.0.94. | 282 |
| abstract_inverted_index.Kappa | 220, 279, 294 |
| abstract_inverted_index.Model | 144 |
| abstract_inverted_index.Soil, | 0 |
| abstract_inverted_index.Swarm | 199 |
| abstract_inverted_index.These | 79 |
| abstract_inverted_index.based | 183 |
| abstract_inverted_index.basis | 342 |
| abstract_inverted_index.data, | 136, 146 |
| abstract_inverted_index.grave | 39 |
| abstract_inverted_index.index | 167, 176 |
| abstract_inverted_index.land, | 25 |
| abstract_inverted_index.means | 330 |
| abstract_inverted_index.model | 246, 285, 301 |
| abstract_inverted_index.study | 110, 325 |
| abstract_inverted_index.using | 216, 286 |
| abstract_inverted_index.which | 229 |
| abstract_inverted_index.34.72% | 292 |
| abstract_inverted_index.38.81% | 296 |
| abstract_inverted_index.China, | 119 |
| abstract_inverted_index.Forest | 186 |
| abstract_inverted_index.Heshan | 114 |
| abstract_inverted_index.Models | 178 |
| abstract_inverted_index.PSO-RF | 257, 269, 284 |
| abstract_inverted_index.Random | 185 |
| abstract_inverted_index.Scheme | 227, 287, 303 |
| abstract_inverted_index.Vector | 190 |
| abstract_inverted_index.costs, | 74 |
| abstract_inverted_index.crops. | 323 |
| abstract_inverted_index.design | 148 |
| abstract_inverted_index.global | 24 |
| abstract_inverted_index.growth | 319 |
| abstract_inverted_index.higher | 248 |
| abstract_inverted_index.impact | 311 |
| abstract_inverted_index.model, | 270 |
| abstract_inverted_index.model. | 254 |
| abstract_inverted_index.models | 213, 260 |
| abstract_inverted_index.normal | 318 |
| abstract_inverted_index.offers | 339 |
| abstract_inverted_index.posing | 37 |
| abstract_inverted_index.remote | 126 |
| abstract_inverted_index.survey | 64 |
| abstract_inverted_index.threat | 40 |
| abstract_inverted_index.yield. | 16 |
| abstract_inverted_index.Digital | 142 |
| abstract_inverted_index.Machine | 191 |
| abstract_inverted_index.PSO-SVM | 259 |
| abstract_inverted_index.Support | 189 |
| abstract_inverted_index.Topsoil | 305 |
| abstract_inverted_index.affects | 20 |
| abstract_inverted_index.complex | 76 |
| abstract_inverted_index.crucial | 2 |
| abstract_inverted_index.demands | 88 |
| abstract_inverted_index.develop | 101 |
| abstract_inverted_index.feature | 154, 158, 161, 165, 171, 174 |
| abstract_inverted_index.focuses | 111 |
| abstract_inverted_index.growth, | 13, 314 |
| abstract_inverted_index.imagery | 140 |
| abstract_inverted_index.impacts | 11 |
| abstract_inverted_index.limited | 67 |
| abstract_inverted_index.machine | 130 |
| abstract_inverted_index.method. | 108 |
| abstract_inverted_index.methods | 65 |
| abstract_inverted_index.models. | 208 |
| abstract_inverted_index.natural | 3 |
| abstract_inverted_index.overall | 217, 273 |
| abstract_inverted_index.regions | 337 |
| abstract_inverted_index.results | 224 |
| abstract_inverted_index.sensing | 127 |
| abstract_inverted_index.subject | 123 |
| abstract_inverted_index.thereby | 350 |
| abstract_inverted_index.topsoil | 27, 180 |
| abstract_inverted_index.various | 236 |
| abstract_inverted_index.However, | 17 |
| abstract_inverted_index.Particle | 198 |
| abstract_inverted_index.accuracy | 218, 250, 274 |
| abstract_inverted_index.accurate | 48, 106 |
| abstract_inverted_index.compared | 297 |
| abstract_inverted_index.effects. | 243 |
| abstract_inverted_index.emerging | 29 |
| abstract_inverted_index.improves | 289 |
| abstract_inverted_index.indices, | 237 |
| abstract_inverted_index.learning | 131 |
| abstract_inverted_index.methods. | 132 |
| abstract_inverted_index.negative | 310 |
| abstract_inverted_index.optimize | 206 |
| abstract_inverted_index.performs | 238 |
| abstract_inverted_index.provides | 326 |
| abstract_inverted_index.quality, | 14 |
| abstract_inverted_index.research | 91, 122 |
| abstract_inverted_index.resource | 4 |
| abstract_inverted_index.schemes. | 151 |
| abstract_inverted_index.severely | 315 |
| abstract_inverted_index.spectral | 153, 157, 164, 170, 231 |
| abstract_inverted_index.utilizes | 125 |
| abstract_inverted_index.Elevation | 143 |
| abstract_inverted_index.Province, | 118 |
| abstract_inverted_index.accuracy, | 266 |
| abstract_inverted_index.algorithm | 202 |
| abstract_inverted_index.effective | 57, 345 |
| abstract_inverted_index.efficient | 93, 104, 328 |
| abstract_inverted_index.essential | 54 |
| abstract_inverted_index.evaluated | 215 |
| abstract_inverted_index.features, | 232, 234 |
| abstract_inverted_index.including | 137 |
| abstract_inverted_index.one-third | 22 |
| abstract_inverted_index.optimized | 256 |
| abstract_inverted_index.promoting | 351 |
| abstract_inverted_index.satellite | 139 |
| abstract_inverted_index.technical | 329 |
| abstract_inverted_index.Sentinel-2 | 138 |
| abstract_inverted_index.Therefore, | 47, 96 |
| abstract_inverted_index.algorithms | 193 |
| abstract_inverted_index.black-soil | 336 |
| abstract_inverted_index.developed, | 195 |
| abstract_inverted_index.ecological | 347 |
| abstract_inverted_index.especially | 267 |
| abstract_inverted_index.extraction | 107, 150, 242, 265 |
| abstract_inverted_index.imperative | 99 |
| abstract_inverted_index.integrates | 230 |
| abstract_inverted_index.introduced | 204 |
| abstract_inverted_index.introduces | 134 |
| abstract_inverted_index.management | 61, 354 |
| abstract_inverted_index.monitoring | 49, 332 |
| abstract_inverted_index.processes, | 72 |
| abstract_inverted_index.profoundly | 10 |
| abstract_inverted_index.protection | 59, 348 |
| abstract_inverted_index.resources. | 357 |
| abstract_inverted_index.scientific | 341 |
| abstract_inverted_index.technology | 128 |
| abstract_inverted_index.Traditional | 63 |
| abstract_inverted_index.challenging | 84 |
| abstract_inverted_index.coefficient | 221, 280 |
| abstract_inverted_index.cornerstone | 7 |
| abstract_inverted_index.degradation | 19, 334 |
| abstract_inverted_index.development | 321 |
| abstract_inverted_index.extraction. | 177 |
| abstract_inverted_index.extraction; | 155, 162, 168 |
| abstract_inverted_index.formulating | 56, 344 |
| abstract_inverted_index.indicators. | 222 |
| abstract_inverted_index.information | 94 |
| abstract_inverted_index.large-scale | 90 |
| abstract_inverted_index.limitations | 80 |
| abstract_inverted_index.performance | 210 |
| abstract_inverted_index.processing. | 78, 95 |
| abstract_inverted_index.restricting | 316 |
| abstract_inverted_index.significant | 32, 262, 309 |
| abstract_inverted_index.strategies, | 349 |
| abstract_inverted_index.strategies. | 62 |
| abstract_inverted_index.sustainable | 353 |
| abstract_inverted_index.topographic | 160, 173, 233 |
| abstract_inverted_index.Heilongjiang | 117 |
| abstract_inverted_index.Optimization | 200 |
| abstract_inverted_index.agricultural | 42, 346 |
| abstract_inverted_index.agriculture, | 9 |
| abstract_inverted_index.degradation, | 36 |
| abstract_inverted_index.demonstrates | 247 |
| abstract_inverted_index.development. | 46 |
| abstract_inverted_index.distribution | 52 |
| abstract_inverted_index.improvements | 263 |
| abstract_inverted_index.multi-source | 135 |
| abstract_inverted_index.particularly | 83 |
| abstract_inverted_index.topsoil-loss | 51 |
| abstract_inverted_index.classification | 249 |
| abstract_inverted_index.identification | 182 |
| abstract_inverted_index.socio-economic | 45 |
| abstract_inverted_index.sustainability | 43 |
| abstract_inverted_index.time-consuming | 69 |
| abstract_inverted_index.labor-intensive | 71 |
| cited_by_percentile_year.max | 98 |
| cited_by_percentile_year.min | 97 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 8 |
| citation_normalized_percentile.value | 0.97597126 |
| citation_normalized_percentile.is_in_top_1_percent | True |
| citation_normalized_percentile.is_in_top_10_percent | True |