Study on the Retrieval of Leaf Area Index for Summer Maize Based on Hyperspectral Data Article Swipe
Global climate change has led to frequent extreme weather events such as high temperatures and droughts, severely threatening the heat and water balance during the growing season of summer maize. To adapt to these changes, adjusting planting dates to optimize crop development has become a key agronomic measure for mitigating climate stress and ensuring yield. Against this backdrop, precise monitoring of leaf area index (LAI) is crucial for evaluating the effectiveness of planting date regulation and achieving precision management. To reveal the impact of planting date variations on summer maize LAI inversion and address the limitations of single data sources in comprehensively reflecting complex environmental conditions affecting crop growth, this study examined summer maize at different planting dates across the North China Plain. Through stepwise regression analysis (SRA), multiple vegetation indices (VIs) and 0–2nd order fractional order derivatives (FODs), spectral parameters were dynamically screened. These were then integrated with effective accumulated temperature (EAT) to optimize model inputs. Partial Least Squares Regression (PLSR), Random Forest (RF), Support Vector Regression (SVR), and Adaptive Boosting Regression (AdaBoot) algorithms were employed to construct LAI inversion models for summer maize across different planting dates and mixed planting dates. Results indicate that, compared to empirical VIs and “tri-band” parameters, randomly selected dual-band combination VIs exhibit the strongest correlation with summer maize LAI. Key bands identified through SRA screening concentrated in the 0.7–1.2 order range, primarily distributed across the red edge and near-infrared bands. Multi-feature models incorporating EAT significantly improved retrieval accuracy compared to single-feature models. Optimal models and feature combinations varied across planting dates. Overall, the VIs + EAT combination exhibited the highest stability across all models. Ensemble learning algorithms RF and AdaBoost performed exceptionally well, achieving average R2 values of 0.93 and 0.92, respectively. The model accuracy for the 20-day delayed planting (S4) decreased significantly, with an average R2 of 0.62, while the average R2 for other planting dates exceeded 0.90. This indicates that the altered environmental conditions during the later growth stages of LAI due to delayed planting hindered LAI estimation. This study provides an effective method for estimating summer maize LAI across different planting dates under climate change, offering scientific basis for optimizing adaptive cultivation strategies for maize in the North China Plain.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.3390/agriengineering7120418
- OA Status
- gold
- References
- 21
- OpenAlex ID
- https://openalex.org/W4416999039
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4416999039Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.3390/agriengineering7120418Digital Object Identifier
- Title
-
Study on the Retrieval of Leaf Area Index for Summer Maize Based on Hyperspectral DataWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-12-04Full publication date if available
- Authors
-
Tian ZhangList of authors in order
- Landing page
-
https://doi.org/10.3390/agriengineering7120418Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.3390/agriengineering7120418Direct OA link when available
- Cited by
-
0Total citation count in OpenAlex
- References (count)
-
21Number of works referenced by this work
Full payload
| id | https://openalex.org/W4416999039 |
|---|---|
| doi | https://doi.org/10.3390/agriengineering7120418 |
| ids.doi | https://doi.org/10.3390/agriengineering7120418 |
| ids.openalex | https://openalex.org/W4416999039 |
| fwci | |
| type | article |
| title | Study on the Retrieval of Leaf Area Index for Summer Maize Based on Hyperspectral Data |
| biblio.issue | 12 |
| biblio.volume | 7 |
| biblio.last_page | 418 |
| biblio.first_page | 418 |
| is_xpac | False |
| apc_list.value | 1200 |
| apc_list.currency | CHF |
| apc_list.value_usd | 1299 |
| apc_paid.value | 1200 |
| apc_paid.currency | CHF |
| apc_paid.value_usd | 1299 |
| language | en |
| locations[0].id | doi:10.3390/agriengineering7120418 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4210177564 |
| locations[0].source.issn | 2624-7402 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2624-7402 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | AgriEngineering |
| locations[0].source.host_organization | https://openalex.org/P4310310987 |
| locations[0].source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310310987 |
| locations[0].source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| locations[0].license | cc-by |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | AgriEngineering |
| locations[0].landing_page_url | https://doi.org/10.3390/agriengineering7120418 |
| indexed_in | crossref, doaj |
| authorships[0].author.id | https://openalex.org/A5100371729 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-1284-1232 |
| authorships[0].author.display_name | Tian Zhang |
| authorships[0].countries | CN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I47689461 |
| authorships[0].affiliations[0].raw_affiliation_string | College of Computer and Control Engineering, Northeast Forestry University, Harbin 150040, China |
| authorships[0].institutions[0].id | https://openalex.org/I47689461 |
| authorships[0].institutions[0].ror | https://ror.org/02yxnh564 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I47689461 |
| authorships[0].institutions[0].country_code | CN |
| authorships[0].institutions[0].display_name | Northeast Forestry University |
| authorships[0].author_position | middle |
| authorships[0].raw_author_name | Tian Zhang |
| authorships[0].is_corresponding | True |
| authorships[0].raw_affiliation_strings | College of Computer and Control Engineering, Northeast Forestry University, Harbin 150040, China |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.3390/agriengineering7120418 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-12-04T00:00:00 |
| display_name | Study on the Retrieval of Leaf Area Index for Summer Maize Based on Hyperspectral Data |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-12-05T23:21:25.405358 |
| primary_topic | |
| cited_by_count | 0 |
| locations_count | 1 |
| best_oa_location.id | doi:10.3390/agriengineering7120418 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4210177564 |
| best_oa_location.source.issn | 2624-7402 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2624-7402 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | AgriEngineering |
| best_oa_location.source.host_organization | https://openalex.org/P4310310987 |
| best_oa_location.source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| best_oa_location.source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | AgriEngineering |
| best_oa_location.landing_page_url | https://doi.org/10.3390/agriengineering7120418 |
| primary_location.id | doi:10.3390/agriengineering7120418 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4210177564 |
| primary_location.source.issn | 2624-7402 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2624-7402 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | AgriEngineering |
| primary_location.source.host_organization | https://openalex.org/P4310310987 |
| primary_location.source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| primary_location.source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| primary_location.license | cc-by |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | AgriEngineering |
| primary_location.landing_page_url | https://doi.org/10.3390/agriengineering7120418 |
| publication_date | 2025-12-04 |
| publication_year | 2025 |
| referenced_works | https://openalex.org/W4310808897, https://openalex.org/W3209906348, https://openalex.org/W3183535878, https://openalex.org/W4407549149, https://openalex.org/W4327984041, https://openalex.org/W4393259341, https://openalex.org/W4408085751, https://openalex.org/W2911592480, https://openalex.org/W3068524501, https://openalex.org/W4392584646, https://openalex.org/W4382359401, https://openalex.org/W4386222520, https://openalex.org/W4375850239, https://openalex.org/W4397016178, https://openalex.org/W3180863154, https://openalex.org/W4322504455, https://openalex.org/W4391884006, https://openalex.org/W4384472163, https://openalex.org/W4399750175, https://openalex.org/W3003888379, https://openalex.org/W3175912960 |
| referenced_works_count | 21 |
| abstract_inverted_index.+ | 261 |
| abstract_inverted_index.a | 44 |
| abstract_inverted_index.R2 | 282, 303, 309 |
| abstract_inverted_index.RF | 274 |
| abstract_inverted_index.To | 30, 79 |
| abstract_inverted_index.an | 301, 340 |
| abstract_inverted_index.as | 11 |
| abstract_inverted_index.at | 114 |
| abstract_inverted_index.in | 100, 223, 365 |
| abstract_inverted_index.is | 65 |
| abstract_inverted_index.of | 27, 60, 71, 83, 96, 284, 304, 328 |
| abstract_inverted_index.on | 87 |
| abstract_inverted_index.to | 5, 32, 38, 153, 177, 197, 246, 331 |
| abstract_inverted_index.EAT | 240, 262 |
| abstract_inverted_index.Key | 216 |
| abstract_inverted_index.LAI | 90, 179, 329, 335, 347 |
| abstract_inverted_index.SRA | 220 |
| abstract_inverted_index.The | 289 |
| abstract_inverted_index.VIs | 199, 207, 260 |
| abstract_inverted_index.all | 269 |
| abstract_inverted_index.and | 14, 20, 52, 75, 92, 132, 169, 189, 200, 234, 251, 275, 286 |
| abstract_inverted_index.due | 330 |
| abstract_inverted_index.for | 48, 67, 182, 292, 310, 343, 358, 363 |
| abstract_inverted_index.has | 3, 42 |
| abstract_inverted_index.key | 45 |
| abstract_inverted_index.led | 4 |
| abstract_inverted_index.red | 232 |
| abstract_inverted_index.the | 18, 24, 69, 81, 94, 119, 209, 224, 231, 259, 265, 293, 307, 319, 324, 366 |
| abstract_inverted_index.(S4) | 297 |
| abstract_inverted_index.0.93 | 285 |
| abstract_inverted_index.LAI. | 215 |
| abstract_inverted_index.This | 316, 337 |
| abstract_inverted_index.area | 62 |
| abstract_inverted_index.crop | 40, 107 |
| abstract_inverted_index.data | 98 |
| abstract_inverted_index.date | 73, 85 |
| abstract_inverted_index.edge | 233 |
| abstract_inverted_index.heat | 19 |
| abstract_inverted_index.high | 12 |
| abstract_inverted_index.leaf | 61 |
| abstract_inverted_index.such | 10 |
| abstract_inverted_index.that | 318 |
| abstract_inverted_index.then | 146 |
| abstract_inverted_index.this | 56, 109 |
| abstract_inverted_index.were | 141, 145, 175 |
| abstract_inverted_index.with | 148, 212, 300 |
| abstract_inverted_index.(EAT) | 152 |
| abstract_inverted_index.(LAI) | 64 |
| abstract_inverted_index.(RF), | 164 |
| abstract_inverted_index.(VIs) | 131 |
| abstract_inverted_index.0.62, | 305 |
| abstract_inverted_index.0.90. | 315 |
| abstract_inverted_index.0.92, | 287 |
| abstract_inverted_index.China | 121, 368 |
| abstract_inverted_index.Least | 158 |
| abstract_inverted_index.North | 120, 367 |
| abstract_inverted_index.These | 144 |
| abstract_inverted_index.adapt | 31 |
| abstract_inverted_index.bands | 217 |
| abstract_inverted_index.basis | 357 |
| abstract_inverted_index.dates | 37, 117, 188, 313, 351 |
| abstract_inverted_index.index | 63 |
| abstract_inverted_index.later | 325 |
| abstract_inverted_index.maize | 89, 113, 184, 214, 346, 364 |
| abstract_inverted_index.mixed | 190 |
| abstract_inverted_index.model | 155, 290 |
| abstract_inverted_index.order | 134, 136, 226 |
| abstract_inverted_index.other | 311 |
| abstract_inverted_index.study | 110, 338 |
| abstract_inverted_index.that, | 195 |
| abstract_inverted_index.these | 33 |
| abstract_inverted_index.under | 352 |
| abstract_inverted_index.water | 21 |
| abstract_inverted_index.well, | 279 |
| abstract_inverted_index.while | 306 |
| abstract_inverted_index.(SRA), | 127 |
| abstract_inverted_index.(SVR), | 168 |
| abstract_inverted_index.20-day | 294 |
| abstract_inverted_index.Forest | 163 |
| abstract_inverted_index.Global | 0 |
| abstract_inverted_index.Plain. | 122, 369 |
| abstract_inverted_index.Random | 162 |
| abstract_inverted_index.Vector | 166 |
| abstract_inverted_index.across | 118, 185, 230, 255, 268, 348 |
| abstract_inverted_index.bands. | 236 |
| abstract_inverted_index.become | 43 |
| abstract_inverted_index.change | 2 |
| abstract_inverted_index.dates. | 192, 257 |
| abstract_inverted_index.during | 23, 323 |
| abstract_inverted_index.events | 9 |
| abstract_inverted_index.growth | 326 |
| abstract_inverted_index.impact | 82 |
| abstract_inverted_index.maize. | 29 |
| abstract_inverted_index.method | 342 |
| abstract_inverted_index.models | 181, 238, 250 |
| abstract_inverted_index.range, | 227 |
| abstract_inverted_index.reveal | 80 |
| abstract_inverted_index.season | 26 |
| abstract_inverted_index.single | 97 |
| abstract_inverted_index.stages | 327 |
| abstract_inverted_index.stress | 51 |
| abstract_inverted_index.summer | 28, 88, 112, 183, 213, 345 |
| abstract_inverted_index.values | 283 |
| abstract_inverted_index.varied | 254 |
| abstract_inverted_index.yield. | 54 |
| abstract_inverted_index.(FODs), | 138 |
| abstract_inverted_index.(PLSR), | 161 |
| abstract_inverted_index.0–2nd | 133 |
| abstract_inverted_index.Against | 55 |
| abstract_inverted_index.Optimal | 249 |
| abstract_inverted_index.Partial | 157 |
| abstract_inverted_index.Results | 193 |
| abstract_inverted_index.Squares | 159 |
| abstract_inverted_index.Support | 165 |
| abstract_inverted_index.Through | 123 |
| abstract_inverted_index.address | 93 |
| abstract_inverted_index.altered | 320 |
| abstract_inverted_index.average | 281, 302, 308 |
| abstract_inverted_index.balance | 22 |
| abstract_inverted_index.change, | 354 |
| abstract_inverted_index.climate | 1, 50, 353 |
| abstract_inverted_index.complex | 103 |
| abstract_inverted_index.crucial | 66 |
| abstract_inverted_index.delayed | 295, 332 |
| abstract_inverted_index.exhibit | 208 |
| abstract_inverted_index.extreme | 7 |
| abstract_inverted_index.feature | 252 |
| abstract_inverted_index.growing | 25 |
| abstract_inverted_index.growth, | 108 |
| abstract_inverted_index.highest | 266 |
| abstract_inverted_index.indices | 130 |
| abstract_inverted_index.inputs. | 156 |
| abstract_inverted_index.measure | 47 |
| abstract_inverted_index.models. | 248, 270 |
| abstract_inverted_index.precise | 58 |
| abstract_inverted_index.sources | 99 |
| abstract_inverted_index.through | 219 |
| abstract_inverted_index.weather | 8 |
| abstract_inverted_index.AdaBoost | 276 |
| abstract_inverted_index.Adaptive | 170 |
| abstract_inverted_index.Boosting | 171 |
| abstract_inverted_index.Ensemble | 271 |
| abstract_inverted_index.Overall, | 258 |
| abstract_inverted_index.accuracy | 244, 291 |
| abstract_inverted_index.adaptive | 360 |
| abstract_inverted_index.analysis | 126 |
| abstract_inverted_index.changes, | 34 |
| abstract_inverted_index.compared | 196, 245 |
| abstract_inverted_index.employed | 176 |
| abstract_inverted_index.ensuring | 53 |
| abstract_inverted_index.examined | 111 |
| abstract_inverted_index.exceeded | 314 |
| abstract_inverted_index.frequent | 6 |
| abstract_inverted_index.hindered | 334 |
| abstract_inverted_index.improved | 242 |
| abstract_inverted_index.indicate | 194 |
| abstract_inverted_index.learning | 272 |
| abstract_inverted_index.multiple | 128 |
| abstract_inverted_index.offering | 355 |
| abstract_inverted_index.optimize | 39, 154 |
| abstract_inverted_index.planting | 36, 72, 84, 116, 187, 191, 256, 296, 312, 333, 350 |
| abstract_inverted_index.provides | 339 |
| abstract_inverted_index.randomly | 203 |
| abstract_inverted_index.selected | 204 |
| abstract_inverted_index.severely | 16 |
| abstract_inverted_index.spectral | 139 |
| abstract_inverted_index.stepwise | 124 |
| abstract_inverted_index.(AdaBoot) | 173 |
| abstract_inverted_index.0.7–1.2 | 225 |
| abstract_inverted_index.achieving | 76, 280 |
| abstract_inverted_index.adjusting | 35 |
| abstract_inverted_index.affecting | 106 |
| abstract_inverted_index.agronomic | 46 |
| abstract_inverted_index.backdrop, | 57 |
| abstract_inverted_index.construct | 178 |
| abstract_inverted_index.decreased | 298 |
| abstract_inverted_index.different | 115, 186, 349 |
| abstract_inverted_index.droughts, | 15 |
| abstract_inverted_index.dual-band | 205 |
| abstract_inverted_index.effective | 149, 341 |
| abstract_inverted_index.empirical | 198 |
| abstract_inverted_index.exhibited | 264 |
| abstract_inverted_index.indicates | 317 |
| abstract_inverted_index.inversion | 91, 180 |
| abstract_inverted_index.performed | 277 |
| abstract_inverted_index.precision | 77 |
| abstract_inverted_index.primarily | 228 |
| abstract_inverted_index.retrieval | 243 |
| abstract_inverted_index.screened. | 143 |
| abstract_inverted_index.screening | 221 |
| abstract_inverted_index.stability | 267 |
| abstract_inverted_index.strongest | 210 |
| abstract_inverted_index.Regression | 160, 167, 172 |
| abstract_inverted_index.algorithms | 174, 273 |
| abstract_inverted_index.conditions | 105, 322 |
| abstract_inverted_index.estimating | 344 |
| abstract_inverted_index.evaluating | 68 |
| abstract_inverted_index.fractional | 135 |
| abstract_inverted_index.identified | 218 |
| abstract_inverted_index.integrated | 147 |
| abstract_inverted_index.mitigating | 49 |
| abstract_inverted_index.monitoring | 59 |
| abstract_inverted_index.optimizing | 359 |
| abstract_inverted_index.parameters | 140 |
| abstract_inverted_index.reflecting | 102 |
| abstract_inverted_index.regression | 125 |
| abstract_inverted_index.regulation | 74 |
| abstract_inverted_index.scientific | 356 |
| abstract_inverted_index.strategies | 362 |
| abstract_inverted_index.variations | 86 |
| abstract_inverted_index.vegetation | 129 |
| abstract_inverted_index.accumulated | 150 |
| abstract_inverted_index.combination | 206, 263 |
| abstract_inverted_index.correlation | 211 |
| abstract_inverted_index.cultivation | 361 |
| abstract_inverted_index.derivatives | 137 |
| abstract_inverted_index.development | 41 |
| abstract_inverted_index.distributed | 229 |
| abstract_inverted_index.dynamically | 142 |
| abstract_inverted_index.estimation. | 336 |
| abstract_inverted_index.limitations | 95 |
| abstract_inverted_index.management. | 78 |
| abstract_inverted_index.parameters, | 202 |
| abstract_inverted_index.temperature | 151 |
| abstract_inverted_index.threatening | 17 |
| abstract_inverted_index.combinations | 253 |
| abstract_inverted_index.concentrated | 222 |
| abstract_inverted_index.temperatures | 13 |
| abstract_inverted_index.Multi-feature | 237 |
| abstract_inverted_index.effectiveness | 70 |
| abstract_inverted_index.environmental | 104, 321 |
| abstract_inverted_index.exceptionally | 278 |
| abstract_inverted_index.incorporating | 239 |
| abstract_inverted_index.near-infrared | 235 |
| abstract_inverted_index.respectively. | 288 |
| abstract_inverted_index.significantly | 241 |
| abstract_inverted_index.significantly, | 299 |
| abstract_inverted_index.single-feature | 247 |
| abstract_inverted_index.“tri-band” | 201 |
| abstract_inverted_index.comprehensively | 101 |
| cited_by_percentile_year | |
| corresponding_author_ids | https://openalex.org/A5100371729 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 1 |
| corresponding_institution_ids | https://openalex.org/I47689461 |
| citation_normalized_percentile |