Study on Use of AI and Big Data for Commercial System Article Swipe
Sonali Vyas
,
Sai Sathya Jain
,
Isha Choudhary
,
Aryaman Chaudhary
·
YOU?
·
· 2019
· Open Access
·
· DOI: https://doi.org/10.1109/aicai.2019.8701361
YOU?
·
· 2019
· Open Access
·
· DOI: https://doi.org/10.1109/aicai.2019.8701361
With the advent of Artificial intelligence and machine learning, experiences are changing across the globe. In the Commercial sector, companies are trying to make customers interact with Machines and make them experience the warmth of interacting with a human. This case study scrutinizes the idea of putting life in a vending machine through AI and Big data, taking an example of a big soft drink giant Coca-Cola. According to statistics, the number of Smartphone users is about to rise to 2.9 billion in the year 2019. Hence, giving an immense opportunity for the giant to reach ends. Coca-Cola has already introduced technologies such as AI-powered vending machine, recognition technique like OCR.
Related Topics
Concepts
Metadata
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1109/aicai.2019.8701361
- https://ieeexplore.ieee.org/ielx7/8693842/8701225/08701361.pdf
- OA Status
- gold
- Cited By
- 11
- References
- 6
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W2943446859
All OpenAlex metadata
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W2943446859Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1109/aicai.2019.8701361Digital Object Identifier
- Title
-
Study on Use of AI and Big Data for Commercial SystemWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2019Year of publication
- Publication date
-
2019-02-01Full publication date if available
- Authors
-
Sonali Vyas, Sai Sathya Jain, Isha Choudhary, Aryaman ChaudharyList of authors in order
- Landing page
-
https://doi.org/10.1109/aicai.2019.8701361Publisher landing page
- PDF URL
-
https://ieeexplore.ieee.org/ielx7/8693842/8701225/08701361.pdfDirect link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://ieeexplore.ieee.org/ielx7/8693842/8701225/08701361.pdfDirect OA link when available
- Concepts
-
Coca cola, Big data, Globe, Computer science, Artificial intelligence, Cola (plant), Coca, Soft drink, Data science, Machine learning, Advertising, Business, Data mining, Ophthalmology, Food science, Psychiatry, Biology, Chemistry, Psychology, Medicine, BotanyTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
11Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 1, 2024: 5, 2023: 2, 2022: 1, 2021: 1Per-year citation counts (last 5 years)
- References (count)
-
6Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W2943446859 |
|---|---|
| doi | https://doi.org/10.1109/aicai.2019.8701361 |
| ids.doi | https://doi.org/10.1109/aicai.2019.8701361 |
| ids.mag | 2943446859 |
| ids.openalex | https://openalex.org/W2943446859 |
| fwci | 0.96000254 |
| type | article |
| title | Study on Use of AI and Big Data for Commercial System |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | 739 |
| biblio.first_page | 737 |
| topics[0].id | https://openalex.org/T11891 |
| topics[0].field.id | https://openalex.org/fields/14 |
| topics[0].field.display_name | Business, Management and Accounting |
| topics[0].score | 0.9983000159263611 |
| topics[0].domain.id | https://openalex.org/domains/2 |
| topics[0].domain.display_name | Social Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1404 |
| topics[0].subfield.display_name | Management Information Systems |
| topics[0].display_name | Big Data and Business Intelligence |
| topics[1].id | https://openalex.org/T10273 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9725000262260437 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1705 |
| topics[1].subfield.display_name | Computer Networks and Communications |
| topics[1].display_name | IoT and Edge/Fog Computing |
| topics[2].id | https://openalex.org/T14280 |
| topics[2].field.id | https://openalex.org/fields/18 |
| topics[2].field.display_name | Decision Sciences |
| topics[2].score | 0.9327999949455261 |
| topics[2].domain.id | https://openalex.org/domains/2 |
| topics[2].domain.display_name | Social Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1802 |
| topics[2].subfield.display_name | Information Systems and Management |
| topics[2].display_name | Big Data Technologies and Applications |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C2992358082 |
| concepts[0].level | 2 |
| concepts[0].score | 0.9274969100952148 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q2813 |
| concepts[0].display_name | Coca cola |
| concepts[1].id | https://openalex.org/C75684735 |
| concepts[1].level | 2 |
| concepts[1].score | 0.7665235996246338 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q858810 |
| concepts[1].display_name | Big data |
| concepts[2].id | https://openalex.org/C2775899829 |
| concepts[2].level | 2 |
| concepts[2].score | 0.7527923583984375 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q3109007 |
| concepts[2].display_name | Globe |
| concepts[3].id | https://openalex.org/C41008148 |
| concepts[3].level | 0 |
| concepts[3].score | 0.6357049345970154 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[3].display_name | Computer science |
| concepts[4].id | https://openalex.org/C154945302 |
| concepts[4].level | 1 |
| concepts[4].score | 0.5418688654899597 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[4].display_name | Artificial intelligence |
| concepts[5].id | https://openalex.org/C2781138811 |
| concepts[5].level | 2 |
| concepts[5].score | 0.5223991870880127 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q114264 |
| concepts[5].display_name | Cola (plant) |
| concepts[6].id | https://openalex.org/C2781313679 |
| concepts[6].level | 2 |
| concepts[6].score | 0.4303949177265167 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q66793593 |
| concepts[6].display_name | Coca |
| concepts[7].id | https://openalex.org/C2993829149 |
| concepts[7].level | 2 |
| concepts[7].score | 0.4231036901473999 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q147538 |
| concepts[7].display_name | Soft drink |
| concepts[8].id | https://openalex.org/C2522767166 |
| concepts[8].level | 1 |
| concepts[8].score | 0.42182278633117676 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q2374463 |
| concepts[8].display_name | Data science |
| concepts[9].id | https://openalex.org/C119857082 |
| concepts[9].level | 1 |
| concepts[9].score | 0.32823920249938965 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[9].display_name | Machine learning |
| concepts[10].id | https://openalex.org/C112698675 |
| concepts[10].level | 1 |
| concepts[10].score | 0.24480068683624268 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q37038 |
| concepts[10].display_name | Advertising |
| concepts[11].id | https://openalex.org/C144133560 |
| concepts[11].level | 0 |
| concepts[11].score | 0.17781475186347961 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q4830453 |
| concepts[11].display_name | Business |
| concepts[12].id | https://openalex.org/C124101348 |
| concepts[12].level | 1 |
| concepts[12].score | 0.12934917211532593 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q172491 |
| concepts[12].display_name | Data mining |
| concepts[13].id | https://openalex.org/C118487528 |
| concepts[13].level | 1 |
| concepts[13].score | 0.0 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q161437 |
| concepts[13].display_name | Ophthalmology |
| concepts[14].id | https://openalex.org/C31903555 |
| concepts[14].level | 1 |
| concepts[14].score | 0.0 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q1637030 |
| concepts[14].display_name | Food science |
| concepts[15].id | https://openalex.org/C118552586 |
| concepts[15].level | 1 |
| concepts[15].score | 0.0 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q7867 |
| concepts[15].display_name | Psychiatry |
| concepts[16].id | https://openalex.org/C86803240 |
| concepts[16].level | 0 |
| concepts[16].score | 0.0 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q420 |
| concepts[16].display_name | Biology |
| concepts[17].id | https://openalex.org/C185592680 |
| concepts[17].level | 0 |
| concepts[17].score | 0.0 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q2329 |
| concepts[17].display_name | Chemistry |
| concepts[18].id | https://openalex.org/C15744967 |
| concepts[18].level | 0 |
| concepts[18].score | 0.0 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q9418 |
| concepts[18].display_name | Psychology |
| concepts[19].id | https://openalex.org/C71924100 |
| concepts[19].level | 0 |
| concepts[19].score | 0.0 |
| concepts[19].wikidata | https://www.wikidata.org/wiki/Q11190 |
| concepts[19].display_name | Medicine |
| concepts[20].id | https://openalex.org/C59822182 |
| concepts[20].level | 1 |
| concepts[20].score | 0.0 |
| concepts[20].wikidata | https://www.wikidata.org/wiki/Q441 |
| concepts[20].display_name | Botany |
| keywords[0].id | https://openalex.org/keywords/coca-cola |
| keywords[0].score | 0.9274969100952148 |
| keywords[0].display_name | Coca cola |
| keywords[1].id | https://openalex.org/keywords/big-data |
| keywords[1].score | 0.7665235996246338 |
| keywords[1].display_name | Big data |
| keywords[2].id | https://openalex.org/keywords/globe |
| keywords[2].score | 0.7527923583984375 |
| keywords[2].display_name | Globe |
| keywords[3].id | https://openalex.org/keywords/computer-science |
| keywords[3].score | 0.6357049345970154 |
| keywords[3].display_name | Computer science |
| keywords[4].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[4].score | 0.5418688654899597 |
| keywords[4].display_name | Artificial intelligence |
| keywords[5].id | https://openalex.org/keywords/cola |
| keywords[5].score | 0.5223991870880127 |
| keywords[5].display_name | Cola (plant) |
| keywords[6].id | https://openalex.org/keywords/coca |
| keywords[6].score | 0.4303949177265167 |
| keywords[6].display_name | Coca |
| keywords[7].id | https://openalex.org/keywords/soft-drink |
| keywords[7].score | 0.4231036901473999 |
| keywords[7].display_name | Soft drink |
| keywords[8].id | https://openalex.org/keywords/data-science |
| keywords[8].score | 0.42182278633117676 |
| keywords[8].display_name | Data science |
| keywords[9].id | https://openalex.org/keywords/machine-learning |
| keywords[9].score | 0.32823920249938965 |
| keywords[9].display_name | Machine learning |
| keywords[10].id | https://openalex.org/keywords/advertising |
| keywords[10].score | 0.24480068683624268 |
| keywords[10].display_name | Advertising |
| keywords[11].id | https://openalex.org/keywords/business |
| keywords[11].score | 0.17781475186347961 |
| keywords[11].display_name | Business |
| keywords[12].id | https://openalex.org/keywords/data-mining |
| keywords[12].score | 0.12934917211532593 |
| keywords[12].display_name | Data mining |
| language | en |
| locations[0].id | doi:10.1109/aicai.2019.8701361 |
| locations[0].is_oa | True |
| locations[0].source | |
| locations[0].license | |
| locations[0].pdf_url | https://ieeexplore.ieee.org/ielx7/8693842/8701225/08701361.pdf |
| locations[0].version | publishedVersion |
| locations[0].raw_type | proceedings-article |
| locations[0].license_id | |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | 2019 Amity International Conference on Artificial Intelligence (AICAI) |
| locations[0].landing_page_url | https://doi.org/10.1109/aicai.2019.8701361 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5043635991 |
| authorships[0].author.orcid | https://orcid.org/0000-0003-2348-3394 |
| authorships[0].author.display_name | Sonali Vyas |
| authorships[0].affiliations[0].raw_affiliation_string | Amity Institute of Information Technology, Amity University, Rajasthan, Jaipur, India |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Sonali Vyas |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Amity Institute of Information Technology, Amity University, Rajasthan, Jaipur, India |
| authorships[1].author.id | https://openalex.org/A5008782621 |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | Sai Sathya Jain |
| authorships[1].affiliations[0].raw_affiliation_string | Amity Institute of Information Technology, Amity University, Rajasthan, Jaipur, India |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Sai Sathya Jain |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Amity Institute of Information Technology, Amity University, Rajasthan, Jaipur, India |
| authorships[2].author.id | https://openalex.org/A5009068449 |
| authorships[2].author.orcid | |
| authorships[2].author.display_name | Isha Choudhary |
| authorships[2].affiliations[0].raw_affiliation_string | Amity Institute of Information Technology, Amity University, Rajasthan, Jaipur, India |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Isha Choudhary |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Amity Institute of Information Technology, Amity University, Rajasthan, Jaipur, India |
| authorships[3].author.id | https://openalex.org/A5016269783 |
| authorships[3].author.orcid | |
| authorships[3].author.display_name | Aryaman Chaudhary |
| authorships[3].affiliations[0].raw_affiliation_string | Amity Institute of Information Technology, Amity University, Rajasthan, Jaipur, India |
| authorships[3].author_position | last |
| authorships[3].raw_author_name | Aryaman Chaudhary |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Amity Institute of Information Technology, Amity University, Rajasthan, Jaipur, India |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://ieeexplore.ieee.org/ielx7/8693842/8701225/08701361.pdf |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Study on Use of AI and Big Data for Commercial System |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T11891 |
| primary_topic.field.id | https://openalex.org/fields/14 |
| primary_topic.field.display_name | Business, Management and Accounting |
| primary_topic.score | 0.9983000159263611 |
| primary_topic.domain.id | https://openalex.org/domains/2 |
| primary_topic.domain.display_name | Social Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1404 |
| primary_topic.subfield.display_name | Management Information Systems |
| primary_topic.display_name | Big Data and Business Intelligence |
| related_works | https://openalex.org/W1604498651, https://openalex.org/W899711287, https://openalex.org/W3118384187, https://openalex.org/W4207066172, https://openalex.org/W1660816460, https://openalex.org/W1771709670, https://openalex.org/W2141470758, https://openalex.org/W3194610566, https://openalex.org/W861337916, https://openalex.org/W2365051800 |
| cited_by_count | 11 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 1 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 5 |
| counts_by_year[2].year | 2023 |
| counts_by_year[2].cited_by_count | 2 |
| counts_by_year[3].year | 2022 |
| counts_by_year[3].cited_by_count | 1 |
| counts_by_year[4].year | 2021 |
| counts_by_year[4].cited_by_count | 1 |
| counts_by_year[5].year | 2019 |
| counts_by_year[5].cited_by_count | 1 |
| locations_count | 1 |
| best_oa_location.id | doi:10.1109/aicai.2019.8701361 |
| best_oa_location.is_oa | True |
| best_oa_location.source | |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://ieeexplore.ieee.org/ielx7/8693842/8701225/08701361.pdf |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | proceedings-article |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | 2019 Amity International Conference on Artificial Intelligence (AICAI) |
| best_oa_location.landing_page_url | https://doi.org/10.1109/aicai.2019.8701361 |
| primary_location.id | doi:10.1109/aicai.2019.8701361 |
| primary_location.is_oa | True |
| primary_location.source | |
| primary_location.license | |
| primary_location.pdf_url | https://ieeexplore.ieee.org/ielx7/8693842/8701225/08701361.pdf |
| primary_location.version | publishedVersion |
| primary_location.raw_type | proceedings-article |
| primary_location.license_id | |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | 2019 Amity International Conference on Artificial Intelligence (AICAI) |
| primary_location.landing_page_url | https://doi.org/10.1109/aicai.2019.8701361 |
| publication_date | 2019-02-01 |
| publication_year | 2019 |
| referenced_works | https://openalex.org/W2122122381, https://openalex.org/W2150291840, https://openalex.org/W2153319474, https://openalex.org/W2141975087, https://openalex.org/W2019880039, https://openalex.org/W1786983925 |
| referenced_works_count | 6 |
| abstract_inverted_index.a | 37, 49, 61 |
| abstract_inverted_index.AI | 53 |
| abstract_inverted_index.In | 15 |
| abstract_inverted_index.an | 58, 88 |
| abstract_inverted_index.as | 103 |
| abstract_inverted_index.in | 48, 82 |
| abstract_inverted_index.is | 75 |
| abstract_inverted_index.of | 3, 34, 45, 60, 72 |
| abstract_inverted_index.to | 22, 68, 77, 79, 94 |
| abstract_inverted_index.2.9 | 80 |
| abstract_inverted_index.Big | 55 |
| abstract_inverted_index.and | 6, 28, 54 |
| abstract_inverted_index.are | 10, 20 |
| abstract_inverted_index.big | 62 |
| abstract_inverted_index.for | 91 |
| abstract_inverted_index.has | 98 |
| abstract_inverted_index.the | 1, 13, 16, 32, 43, 70, 83, 92 |
| abstract_inverted_index.OCR. | 110 |
| abstract_inverted_index.This | 39 |
| abstract_inverted_index.With | 0 |
| abstract_inverted_index.case | 40 |
| abstract_inverted_index.idea | 44 |
| abstract_inverted_index.life | 47 |
| abstract_inverted_index.like | 109 |
| abstract_inverted_index.make | 23, 29 |
| abstract_inverted_index.rise | 78 |
| abstract_inverted_index.soft | 63 |
| abstract_inverted_index.such | 102 |
| abstract_inverted_index.them | 30 |
| abstract_inverted_index.with | 26, 36 |
| abstract_inverted_index.year | 84 |
| abstract_inverted_index.2019. | 85 |
| abstract_inverted_index.about | 76 |
| abstract_inverted_index.data, | 56 |
| abstract_inverted_index.drink | 64 |
| abstract_inverted_index.ends. | 96 |
| abstract_inverted_index.giant | 65, 93 |
| abstract_inverted_index.reach | 95 |
| abstract_inverted_index.study | 41 |
| abstract_inverted_index.users | 74 |
| abstract_inverted_index.Hence, | 86 |
| abstract_inverted_index.across | 12 |
| abstract_inverted_index.advent | 2 |
| abstract_inverted_index.giving | 87 |
| abstract_inverted_index.globe. | 14 |
| abstract_inverted_index.human. | 38 |
| abstract_inverted_index.number | 71 |
| abstract_inverted_index.taking | 57 |
| abstract_inverted_index.trying | 21 |
| abstract_inverted_index.warmth | 33 |
| abstract_inverted_index.already | 99 |
| abstract_inverted_index.billion | 81 |
| abstract_inverted_index.example | 59 |
| abstract_inverted_index.immense | 89 |
| abstract_inverted_index.machine | 7, 51 |
| abstract_inverted_index.putting | 46 |
| abstract_inverted_index.sector, | 18 |
| abstract_inverted_index.through | 52 |
| abstract_inverted_index.vending | 50, 105 |
| abstract_inverted_index.Machines | 27 |
| abstract_inverted_index.changing | 11 |
| abstract_inverted_index.interact | 25 |
| abstract_inverted_index.machine, | 106 |
| abstract_inverted_index.According | 67 |
| abstract_inverted_index.Coca-Cola | 97 |
| abstract_inverted_index.companies | 19 |
| abstract_inverted_index.customers | 24 |
| abstract_inverted_index.learning, | 8 |
| abstract_inverted_index.technique | 108 |
| abstract_inverted_index.AI-powered | 104 |
| abstract_inverted_index.Artificial | 4 |
| abstract_inverted_index.Coca-Cola. | 66 |
| abstract_inverted_index.Commercial | 17 |
| abstract_inverted_index.Smartphone | 73 |
| abstract_inverted_index.experience | 31 |
| abstract_inverted_index.introduced | 100 |
| abstract_inverted_index.experiences | 9 |
| abstract_inverted_index.interacting | 35 |
| abstract_inverted_index.opportunity | 90 |
| abstract_inverted_index.recognition | 107 |
| abstract_inverted_index.scrutinizes | 42 |
| abstract_inverted_index.statistics, | 69 |
| abstract_inverted_index.intelligence | 5 |
| abstract_inverted_index.technologies | 101 |
| cited_by_percentile_year.max | 98 |
| cited_by_percentile_year.min | 89 |
| countries_distinct_count | 0 |
| institutions_distinct_count | 4 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/9 |
| sustainable_development_goals[0].score | 0.4099999964237213 |
| sustainable_development_goals[0].display_name | Industry, innovation and infrastructure |
| citation_normalized_percentile.value | 0.78338087 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |