Studying ECG signals using nonlinear oscillators and Genetic Algorithm Article Swipe
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2403.03587
Cardiovascular diseases are the leading cause of death and disability in the world and thus their detection is extremely important as early as possible so that it can be prognosed and managed appropriately. Hence, electrophysiological models dealing with cardiac conduction are critically important in the field of interdisciplinary sciences. The primary aim of this paper is to reproduce a normal sinus rhythm ECG waveform which will act as the baseline for fitting and then fit any clinical ECG waveform that does not deviate much from normal sinus rhythm. To reproduce the ECG, we modeled the pacemaker complex using three coupled van der Pol (VDP) oscillators with appropriate delays to generate the action potentials. These action potentials are responsible for the excitation of the non-pacemaker cells of the atria and ventricles whose electrical activity gets recorded as the ECG signal. The ECG signal is composed of a periodic set of individual waves corresponding to atrial and ventricular contraction and relaxation. These waves are modeled with the help of four FitzHugh-Nagumo (FHN) equations with impulses corresponding to the action potentials generated by the pacemaker cells. After the successful reproduction of a normal sinus rhythm ECG, we have developed a framework where we have used genetic algorithm (GA) to fit a given clinical ECG data with parameters belonging to the above mentioned system of delay differential equations (DDEs). The GA framework has enabled us to fit ECG data representing different cardiac conditions reasonably well. We aim to use this work to get a better understanding of the cardiac conduction system and cardiovascular diseases which will help humanity in the future.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2403.03587
- https://arxiv.org/pdf/2403.03587
- OA Status
- green
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4392576034
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4392576034Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2403.03587Digital Object Identifier
- Title
-
Studying ECG signals using nonlinear oscillators and Genetic AlgorithmWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-03-06Full publication date if available
- Authors
-
Sourav Chowdhury, Apratim Ghosal, Suparna Roychowhury, Indranath ChaudhuriList of authors in order
- Landing page
-
https://arxiv.org/abs/2403.03587Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2403.03587Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2403.03587Direct OA link when available
- Concepts
-
Nonlinear system, Algorithm, Computer science, Genetic algorithm, Artificial intelligence, Machine learning, Physics, Quantum mechanicsTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4392576034 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2403.03587 |
| ids.doi | https://doi.org/10.48550/arxiv.2403.03587 |
| ids.openalex | https://openalex.org/W4392576034 |
| fwci | |
| type | preprint |
| title | Studying ECG signals using nonlinear oscillators and Genetic Algorithm |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T11021 |
| topics[0].field.id | https://openalex.org/fields/27 |
| topics[0].field.display_name | Medicine |
| topics[0].score | 0.42579999566078186 |
| topics[0].domain.id | https://openalex.org/domains/4 |
| topics[0].domain.display_name | Health Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2705 |
| topics[0].subfield.display_name | Cardiology and Cardiovascular Medicine |
| topics[0].display_name | ECG Monitoring and Analysis |
| topics[1].id | https://openalex.org/T10876 |
| topics[1].field.id | https://openalex.org/fields/22 |
| topics[1].field.display_name | Engineering |
| topics[1].score | 0.37560001015663147 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2207 |
| topics[1].subfield.display_name | Control and Systems Engineering |
| topics[1].display_name | Fault Detection and Control Systems |
| topics[2].id | https://openalex.org/T12564 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.36880001425743103 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1705 |
| topics[2].subfield.display_name | Computer Networks and Communications |
| topics[2].display_name | Sensor Technology and Measurement Systems |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C158622935 |
| concepts[0].level | 2 |
| concepts[0].score | 0.5946385860443115 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q660848 |
| concepts[0].display_name | Nonlinear system |
| concepts[1].id | https://openalex.org/C11413529 |
| concepts[1].level | 1 |
| concepts[1].score | 0.5744157433509827 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q8366 |
| concepts[1].display_name | Algorithm |
| concepts[2].id | https://openalex.org/C41008148 |
| concepts[2].level | 0 |
| concepts[2].score | 0.558413028717041 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[2].display_name | Computer science |
| concepts[3].id | https://openalex.org/C8880873 |
| concepts[3].level | 2 |
| concepts[3].score | 0.49390703439712524 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q187787 |
| concepts[3].display_name | Genetic algorithm |
| concepts[4].id | https://openalex.org/C154945302 |
| concepts[4].level | 1 |
| concepts[4].score | 0.3211214542388916 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[4].display_name | Artificial intelligence |
| concepts[5].id | https://openalex.org/C119857082 |
| concepts[5].level | 1 |
| concepts[5].score | 0.2083602249622345 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[5].display_name | Machine learning |
| concepts[6].id | https://openalex.org/C121332964 |
| concepts[6].level | 0 |
| concepts[6].score | 0.16831347346305847 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q413 |
| concepts[6].display_name | Physics |
| concepts[7].id | https://openalex.org/C62520636 |
| concepts[7].level | 1 |
| concepts[7].score | 0.0 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q944 |
| concepts[7].display_name | Quantum mechanics |
| keywords[0].id | https://openalex.org/keywords/nonlinear-system |
| keywords[0].score | 0.5946385860443115 |
| keywords[0].display_name | Nonlinear system |
| keywords[1].id | https://openalex.org/keywords/algorithm |
| keywords[1].score | 0.5744157433509827 |
| keywords[1].display_name | Algorithm |
| keywords[2].id | https://openalex.org/keywords/computer-science |
| keywords[2].score | 0.558413028717041 |
| keywords[2].display_name | Computer science |
| keywords[3].id | https://openalex.org/keywords/genetic-algorithm |
| keywords[3].score | 0.49390703439712524 |
| keywords[3].display_name | Genetic algorithm |
| keywords[4].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[4].score | 0.3211214542388916 |
| keywords[4].display_name | Artificial intelligence |
| keywords[5].id | https://openalex.org/keywords/machine-learning |
| keywords[5].score | 0.2083602249622345 |
| keywords[5].display_name | Machine learning |
| keywords[6].id | https://openalex.org/keywords/physics |
| keywords[6].score | 0.16831347346305847 |
| keywords[6].display_name | Physics |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2403.03587 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://arxiv.org/pdf/2403.03587 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2403.03587 |
| locations[1].id | doi:10.48550/arxiv.2403.03587 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | cc-by |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | https://openalex.org/licenses/cc-by |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2403.03587 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5101925543 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-1148-2995 |
| authorships[0].author.display_name | Sourav Chowdhury |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Chowdhury, Sourav |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5105287732 |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | Apratim Ghosal |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Ghosal, Apratim |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5094095250 |
| authorships[2].author.orcid | |
| authorships[2].author.display_name | Suparna Roychowhury |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Roychowhury, Suparna |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5039365368 |
| authorships[3].author.orcid | |
| authorships[3].author.display_name | Indranath Chaudhuri |
| authorships[3].author_position | last |
| authorships[3].raw_author_name | Chaudhuri, Indranath |
| authorships[3].is_corresponding | False |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2403.03587 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Studying ECG signals using nonlinear oscillators and Genetic Algorithm |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T11021 |
| primary_topic.field.id | https://openalex.org/fields/27 |
| primary_topic.field.display_name | Medicine |
| primary_topic.score | 0.42579999566078186 |
| primary_topic.domain.id | https://openalex.org/domains/4 |
| primary_topic.domain.display_name | Health Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2705 |
| primary_topic.subfield.display_name | Cardiology and Cardiovascular Medicine |
| primary_topic.display_name | ECG Monitoring and Analysis |
| related_works | https://openalex.org/W2748952813, https://openalex.org/W2051487156, https://openalex.org/W2073681303, https://openalex.org/W2390279801, https://openalex.org/W2358668433, https://openalex.org/W2376932109, https://openalex.org/W2001405890, https://openalex.org/W2382290278, https://openalex.org/W2478288626, https://openalex.org/W4391913857 |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2403.03587 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2403.03587 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2403.03587 |
| primary_location.id | pmh:oai:arXiv.org:2403.03587 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://arxiv.org/pdf/2403.03587 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2403.03587 |
| publication_date | 2024-03-06 |
| publication_year | 2024 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 58, 145, 188, 196, 207, 249 |
| abstract_inverted_index.GA | 226 |
| abstract_inverted_index.To | 88 |
| abstract_inverted_index.We | 241 |
| abstract_inverted_index.as | 20, 22, 67, 135 |
| abstract_inverted_index.be | 28 |
| abstract_inverted_index.by | 179 |
| abstract_inverted_index.in | 10, 43, 264 |
| abstract_inverted_index.is | 17, 55, 142 |
| abstract_inverted_index.it | 26 |
| abstract_inverted_index.of | 6, 46, 52, 121, 125, 144, 148, 166, 187, 220, 252 |
| abstract_inverted_index.so | 24 |
| abstract_inverted_index.to | 56, 108, 152, 174, 205, 215, 231, 243, 247 |
| abstract_inverted_index.us | 230 |
| abstract_inverted_index.we | 92, 193, 199 |
| abstract_inverted_index.ECG | 62, 77, 137, 140, 210, 233 |
| abstract_inverted_index.Pol | 102 |
| abstract_inverted_index.The | 49, 139, 225 |
| abstract_inverted_index.act | 66 |
| abstract_inverted_index.aim | 51, 242 |
| abstract_inverted_index.and | 8, 13, 30, 72, 128, 154, 157, 257 |
| abstract_inverted_index.any | 75 |
| abstract_inverted_index.are | 2, 40, 116, 161 |
| abstract_inverted_index.can | 27 |
| abstract_inverted_index.der | 101 |
| abstract_inverted_index.fit | 74, 206, 232 |
| abstract_inverted_index.for | 70, 118 |
| abstract_inverted_index.get | 248 |
| abstract_inverted_index.has | 228 |
| abstract_inverted_index.not | 81 |
| abstract_inverted_index.set | 147 |
| abstract_inverted_index.the | 3, 11, 44, 68, 90, 94, 110, 119, 122, 126, 136, 164, 175, 180, 184, 216, 253, 265 |
| abstract_inverted_index.use | 244 |
| abstract_inverted_index.van | 100 |
| abstract_inverted_index.(GA) | 204 |
| abstract_inverted_index.ECG, | 91, 192 |
| abstract_inverted_index.data | 211, 234 |
| abstract_inverted_index.does | 80 |
| abstract_inverted_index.four | 167 |
| abstract_inverted_index.from | 84 |
| abstract_inverted_index.gets | 133 |
| abstract_inverted_index.have | 194, 200 |
| abstract_inverted_index.help | 165, 262 |
| abstract_inverted_index.much | 83 |
| abstract_inverted_index.that | 25, 79 |
| abstract_inverted_index.then | 73 |
| abstract_inverted_index.this | 53, 245 |
| abstract_inverted_index.thus | 14 |
| abstract_inverted_index.used | 201 |
| abstract_inverted_index.will | 65, 261 |
| abstract_inverted_index.with | 37, 105, 163, 171, 212 |
| abstract_inverted_index.work | 246 |
| abstract_inverted_index.(FHN) | 169 |
| abstract_inverted_index.(VDP) | 103 |
| abstract_inverted_index.After | 183 |
| abstract_inverted_index.These | 113, 159 |
| abstract_inverted_index.above | 217 |
| abstract_inverted_index.atria | 127 |
| abstract_inverted_index.cause | 5 |
| abstract_inverted_index.cells | 124 |
| abstract_inverted_index.death | 7 |
| abstract_inverted_index.delay | 221 |
| abstract_inverted_index.early | 21 |
| abstract_inverted_index.field | 45 |
| abstract_inverted_index.given | 208 |
| abstract_inverted_index.paper | 54 |
| abstract_inverted_index.sinus | 60, 86, 190 |
| abstract_inverted_index.their | 15 |
| abstract_inverted_index.three | 98 |
| abstract_inverted_index.using | 97 |
| abstract_inverted_index.waves | 150, 160 |
| abstract_inverted_index.well. | 240 |
| abstract_inverted_index.where | 198 |
| abstract_inverted_index.which | 64, 260 |
| abstract_inverted_index.whose | 130 |
| abstract_inverted_index.world | 12 |
| abstract_inverted_index.Hence, | 33 |
| abstract_inverted_index.action | 111, 114, 176 |
| abstract_inverted_index.atrial | 153 |
| abstract_inverted_index.better | 250 |
| abstract_inverted_index.cells. | 182 |
| abstract_inverted_index.delays | 107 |
| abstract_inverted_index.models | 35 |
| abstract_inverted_index.normal | 59, 85, 189 |
| abstract_inverted_index.rhythm | 61, 191 |
| abstract_inverted_index.signal | 141 |
| abstract_inverted_index.system | 219, 256 |
| abstract_inverted_index.(DDEs). | 224 |
| abstract_inverted_index.cardiac | 38, 237, 254 |
| abstract_inverted_index.complex | 96 |
| abstract_inverted_index.coupled | 99 |
| abstract_inverted_index.dealing | 36 |
| abstract_inverted_index.deviate | 82 |
| abstract_inverted_index.enabled | 229 |
| abstract_inverted_index.fitting | 71 |
| abstract_inverted_index.future. | 266 |
| abstract_inverted_index.genetic | 202 |
| abstract_inverted_index.leading | 4 |
| abstract_inverted_index.managed | 31 |
| abstract_inverted_index.modeled | 93, 162 |
| abstract_inverted_index.primary | 50 |
| abstract_inverted_index.rhythm. | 87 |
| abstract_inverted_index.signal. | 138 |
| abstract_inverted_index.activity | 132 |
| abstract_inverted_index.baseline | 69 |
| abstract_inverted_index.clinical | 76, 209 |
| abstract_inverted_index.composed | 143 |
| abstract_inverted_index.diseases | 1, 259 |
| abstract_inverted_index.generate | 109 |
| abstract_inverted_index.humanity | 263 |
| abstract_inverted_index.impulses | 172 |
| abstract_inverted_index.periodic | 146 |
| abstract_inverted_index.possible | 23 |
| abstract_inverted_index.recorded | 134 |
| abstract_inverted_index.waveform | 63, 78 |
| abstract_inverted_index.algorithm | 203 |
| abstract_inverted_index.belonging | 214 |
| abstract_inverted_index.detection | 16 |
| abstract_inverted_index.developed | 195 |
| abstract_inverted_index.different | 236 |
| abstract_inverted_index.equations | 170, 223 |
| abstract_inverted_index.extremely | 18 |
| abstract_inverted_index.framework | 197, 227 |
| abstract_inverted_index.generated | 178 |
| abstract_inverted_index.important | 19, 42 |
| abstract_inverted_index.mentioned | 218 |
| abstract_inverted_index.pacemaker | 95, 181 |
| abstract_inverted_index.prognosed | 29 |
| abstract_inverted_index.reproduce | 57, 89 |
| abstract_inverted_index.sciences. | 48 |
| abstract_inverted_index.conditions | 238 |
| abstract_inverted_index.conduction | 39, 255 |
| abstract_inverted_index.critically | 41 |
| abstract_inverted_index.disability | 9 |
| abstract_inverted_index.electrical | 131 |
| abstract_inverted_index.excitation | 120 |
| abstract_inverted_index.individual | 149 |
| abstract_inverted_index.parameters | 213 |
| abstract_inverted_index.potentials | 115, 177 |
| abstract_inverted_index.reasonably | 239 |
| abstract_inverted_index.successful | 185 |
| abstract_inverted_index.ventricles | 129 |
| abstract_inverted_index.appropriate | 106 |
| abstract_inverted_index.contraction | 156 |
| abstract_inverted_index.oscillators | 104 |
| abstract_inverted_index.potentials. | 112 |
| abstract_inverted_index.relaxation. | 158 |
| abstract_inverted_index.responsible | 117 |
| abstract_inverted_index.ventricular | 155 |
| abstract_inverted_index.differential | 222 |
| abstract_inverted_index.representing | 235 |
| abstract_inverted_index.reproduction | 186 |
| abstract_inverted_index.corresponding | 151, 173 |
| abstract_inverted_index.non-pacemaker | 123 |
| abstract_inverted_index.understanding | 251 |
| abstract_inverted_index.Cardiovascular | 0 |
| abstract_inverted_index.appropriately. | 32 |
| abstract_inverted_index.cardiovascular | 258 |
| abstract_inverted_index.FitzHugh-Nagumo | 168 |
| abstract_inverted_index.interdisciplinary | 47 |
| abstract_inverted_index.electrophysiological | 34 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 4 |
| citation_normalized_percentile |