Studying Urbanization Pattern in Sambalpur City during 1992-2042 using CA-ANN, and Markov-Chain Model Article Swipe
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.26833/ijeg.1452005
Models of land use/land cover (LULC) are crucial for assessing changes in LULC, forecasting land use needs, and providing guidance for appropriate land use planning and management, especially in urban areas. Urban sprawl is one of the main causes of the erratic variation in LULC around the globe. In this study, we used the CA-ANN and Markov-Chain models to analyze the LULC simulation based on LULC patterns from previous decades as well as the directional changes of urban expansion in Sambalpur city. We used the random forest (RF) model and Landsat imagery to prepare LULC maps for the years 1992, 2002, 2012, and 2022 for better classification accuracy. The result showed that the overall accuracy and kappa values were 94.24%, 89%, 94%, and 90% and 0.92, 0.80, 0.90, and 0.85, respectively, for the selective years. Based on the transition matrix model (1992–2012), the LULC map of the year 2022 was obtained and validated, and subsequently, LULC maps for the years 2032 and 2042 were predicted with a Kappa value of 94.97% and 93.24%, respectively. The findings indicate that the largest proportion of bare land underwent conversion within the settlement area, with the highest degree of sprawl observed in the northwestern direction and 4-kilometer buffer zones. These findings define current and future patterns in LULC and offer vital information for planning and sustainable land use management in Sambalpur city.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.26833/ijeg.1452005
- OA Status
- diamond
- Cited By
- 8
- References
- 59
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4404174177
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4404174177Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.26833/ijeg.1452005Digital Object Identifier
- Title
-
Studying Urbanization Pattern in Sambalpur City during 1992-2042 using CA-ANN, and Markov-Chain ModelWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-04-23Full publication date if available
- Authors
-
Avijit Bag, A. P. Sharma, Sudhakar PalList of authors in order
- Landing page
-
https://doi.org/10.26833/ijeg.1452005Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
diamondOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.26833/ijeg.1452005Direct OA link when available
- Concepts
-
Urbanization, Markov chain, Mathematics, Biology, Ecology, StatisticsTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
8Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 8Per-year citation counts (last 5 years)
- References (count)
-
59Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4404174177 |
|---|---|
| doi | https://doi.org/10.26833/ijeg.1452005 |
| ids.doi | https://doi.org/10.26833/ijeg.1452005 |
| ids.openalex | https://openalex.org/W4404174177 |
| fwci | 12.22120211 |
| type | article |
| title | Studying Urbanization Pattern in Sambalpur City during 1992-2042 using CA-ANN, and Markov-Chain Model |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T13373 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.6881999969482422 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1710 |
| topics[0].subfield.display_name | Information Systems |
| topics[0].display_name | Data Mining and Machine Learning Applications |
| topics[1].id | https://openalex.org/T10637 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.6204000115394592 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1702 |
| topics[1].subfield.display_name | Artificial Intelligence |
| topics[1].display_name | Advanced Clustering Algorithms Research |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C39853841 |
| concepts[0].level | 2 |
| concepts[0].score | 0.6212185025215149 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q161078 |
| concepts[0].display_name | Urbanization |
| concepts[1].id | https://openalex.org/C98763669 |
| concepts[1].level | 2 |
| concepts[1].score | 0.5676700472831726 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q176645 |
| concepts[1].display_name | Markov chain |
| concepts[2].id | https://openalex.org/C33923547 |
| concepts[2].level | 0 |
| concepts[2].score | 0.262106716632843 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[2].display_name | Mathematics |
| concepts[3].id | https://openalex.org/C86803240 |
| concepts[3].level | 0 |
| concepts[3].score | 0.20576104521751404 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q420 |
| concepts[3].display_name | Biology |
| concepts[4].id | https://openalex.org/C18903297 |
| concepts[4].level | 1 |
| concepts[4].score | 0.12918376922607422 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q7150 |
| concepts[4].display_name | Ecology |
| concepts[5].id | https://openalex.org/C105795698 |
| concepts[5].level | 1 |
| concepts[5].score | 0.12195628881454468 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q12483 |
| concepts[5].display_name | Statistics |
| keywords[0].id | https://openalex.org/keywords/urbanization |
| keywords[0].score | 0.6212185025215149 |
| keywords[0].display_name | Urbanization |
| keywords[1].id | https://openalex.org/keywords/markov-chain |
| keywords[1].score | 0.5676700472831726 |
| keywords[1].display_name | Markov chain |
| keywords[2].id | https://openalex.org/keywords/mathematics |
| keywords[2].score | 0.262106716632843 |
| keywords[2].display_name | Mathematics |
| keywords[3].id | https://openalex.org/keywords/biology |
| keywords[3].score | 0.20576104521751404 |
| keywords[3].display_name | Biology |
| keywords[4].id | https://openalex.org/keywords/ecology |
| keywords[4].score | 0.12918376922607422 |
| keywords[4].display_name | Ecology |
| keywords[5].id | https://openalex.org/keywords/statistics |
| keywords[5].score | 0.12195628881454468 |
| keywords[5].display_name | Statistics |
| language | en |
| locations[0].id | doi:10.26833/ijeg.1452005 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4210225666 |
| locations[0].source.issn | 2548-0960 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2548-0960 |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | International Journal of Engineering and Geosciences |
| locations[0].source.host_organization | https://openalex.org/P4310318287 |
| locations[0].source.host_organization_name | Association of Food Technology, Turkey |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310318287 |
| locations[0].source.host_organization_lineage_names | Association of Food Technology, Turkey |
| locations[0].license | |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | International Journal of Engineering and Geosciences |
| locations[0].landing_page_url | https://doi.org/10.26833/ijeg.1452005 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5114566833 |
| authorships[0].author.orcid | https://orcid.org/0009-0001-6491-9679 |
| authorships[0].author.display_name | Avijit Bag |
| authorships[0].affiliations[0].raw_affiliation_string | Gangadhar Meher University |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Avijit Bag |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Gangadhar Meher University |
| authorships[1].author.id | https://openalex.org/A5047023603 |
| authorships[1].author.orcid | https://orcid.org/0000-0001-6402-0949 |
| authorships[1].author.display_name | A. P. Sharma |
| authorships[1].affiliations[0].raw_affiliation_string | Gangadhar Meher University |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Arabinda Sharma |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Gangadhar Meher University |
| authorships[2].author.id | https://openalex.org/A5056891808 |
| authorships[2].author.orcid | https://orcid.org/0009-0003-2226-1412 |
| authorships[2].author.display_name | Sudhakar Pal |
| authorships[2].affiliations[0].raw_affiliation_string | Gangadhar Meher University |
| authorships[2].author_position | last |
| authorships[2].raw_author_name | Sudhakar Pal |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Gangadhar Meher University |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.26833/ijeg.1452005 |
| open_access.oa_status | diamond |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Studying Urbanization Pattern in Sambalpur City during 1992-2042 using CA-ANN, and Markov-Chain Model |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T13373 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.6881999969482422 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1710 |
| primary_topic.subfield.display_name | Information Systems |
| primary_topic.display_name | Data Mining and Machine Learning Applications |
| related_works | https://openalex.org/W2392907783, https://openalex.org/W1985072978, https://openalex.org/W891751532, https://openalex.org/W2375489112, https://openalex.org/W2370838374, https://openalex.org/W2354222596, https://openalex.org/W2392291083, https://openalex.org/W2353135038, https://openalex.org/W2381059267, https://openalex.org/W2347277971 |
| cited_by_count | 8 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 8 |
| locations_count | 1 |
| best_oa_location.id | doi:10.26833/ijeg.1452005 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4210225666 |
| best_oa_location.source.issn | 2548-0960 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2548-0960 |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | International Journal of Engineering and Geosciences |
| best_oa_location.source.host_organization | https://openalex.org/P4310318287 |
| best_oa_location.source.host_organization_name | Association of Food Technology, Turkey |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310318287 |
| best_oa_location.source.host_organization_lineage_names | Association of Food Technology, Turkey |
| best_oa_location.license | |
| best_oa_location.pdf_url | |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | International Journal of Engineering and Geosciences |
| best_oa_location.landing_page_url | https://doi.org/10.26833/ijeg.1452005 |
| primary_location.id | doi:10.26833/ijeg.1452005 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4210225666 |
| primary_location.source.issn | 2548-0960 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2548-0960 |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | International Journal of Engineering and Geosciences |
| primary_location.source.host_organization | https://openalex.org/P4310318287 |
| primary_location.source.host_organization_name | Association of Food Technology, Turkey |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310318287 |
| primary_location.source.host_organization_lineage_names | Association of Food Technology, Turkey |
| primary_location.license | |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | International Journal of Engineering and Geosciences |
| primary_location.landing_page_url | https://doi.org/10.26833/ijeg.1452005 |
| publication_date | 2024-04-23 |
| publication_year | 2024 |
| referenced_works | https://openalex.org/W2186961306, https://openalex.org/W4200570307, https://openalex.org/W2325704522, https://openalex.org/W4385805691, https://openalex.org/W4210361695, https://openalex.org/W2947066650, https://openalex.org/W3184882445, https://openalex.org/W2049353036, https://openalex.org/W2079034062, https://openalex.org/W2042967898, https://openalex.org/W2069351648, https://openalex.org/W2093673231, https://openalex.org/W2605873475, https://openalex.org/W2411081830, https://openalex.org/W2325770252, https://openalex.org/W2729999264, https://openalex.org/W2792369728, https://openalex.org/W3198553875, https://openalex.org/W1993438172, https://openalex.org/W4200542845, https://openalex.org/W4220731432, https://openalex.org/W2995778335, https://openalex.org/W3186411456, https://openalex.org/W2051512952, https://openalex.org/W4306916526, https://openalex.org/W3166145371, https://openalex.org/W2009175701, https://openalex.org/W2737443375, https://openalex.org/W4232118355, https://openalex.org/W3019464443, https://openalex.org/W4377016701, https://openalex.org/W2904107292, https://openalex.org/W4372294540, https://openalex.org/W2090536324, https://openalex.org/W3089854997, https://openalex.org/W2126875192, https://openalex.org/W2967164470, https://openalex.org/W4306850109, https://openalex.org/W4220816157, https://openalex.org/W3127251988, https://openalex.org/W3109695929, https://openalex.org/W3189551217, https://openalex.org/W2893744532, https://openalex.org/W3088028382, https://openalex.org/W4387890113, https://openalex.org/W4220935313, https://openalex.org/W1138626644, https://openalex.org/W2516818516, https://openalex.org/W3213162437, https://openalex.org/W3112172119, https://openalex.org/W2048106347, https://openalex.org/W4302568255, https://openalex.org/W4310062785, https://openalex.org/W2954776593, https://openalex.org/W4290375078, https://openalex.org/W3099779347, https://openalex.org/W3082255410, https://openalex.org/W3092029829, https://openalex.org/W3049436929 |
| referenced_works_count | 59 |
| abstract_inverted_index.a | 166 |
| abstract_inverted_index.In | 48 |
| abstract_inverted_index.We | 82 |
| abstract_inverted_index.as | 70, 72 |
| abstract_inverted_index.in | 11, 28, 43, 79, 197, 212, 225 |
| abstract_inverted_index.is | 33 |
| abstract_inverted_index.of | 1, 35, 39, 76, 145, 169, 181, 194 |
| abstract_inverted_index.on | 64, 136 |
| abstract_inverted_index.to | 58, 92 |
| abstract_inverted_index.we | 51 |
| abstract_inverted_index.90% | 123 |
| abstract_inverted_index.The | 108, 174 |
| abstract_inverted_index.and | 17, 25, 55, 89, 102, 115, 122, 124, 128, 151, 153, 161, 171, 201, 209, 214, 220 |
| abstract_inverted_index.are | 6 |
| abstract_inverted_index.for | 8, 20, 96, 104, 131, 157, 218 |
| abstract_inverted_index.map | 144 |
| abstract_inverted_index.one | 34 |
| abstract_inverted_index.the | 36, 40, 46, 53, 60, 73, 84, 97, 112, 132, 137, 142, 146, 158, 178, 187, 191, 198 |
| abstract_inverted_index.use | 15, 23, 223 |
| abstract_inverted_index.was | 149 |
| abstract_inverted_index.(RF) | 87 |
| abstract_inverted_index.2022 | 103, 148 |
| abstract_inverted_index.2032 | 160 |
| abstract_inverted_index.2042 | 162 |
| abstract_inverted_index.89%, | 120 |
| abstract_inverted_index.94%, | 121 |
| abstract_inverted_index.LULC | 44, 61, 65, 94, 143, 155, 213 |
| abstract_inverted_index.bare | 182 |
| abstract_inverted_index.from | 67 |
| abstract_inverted_index.land | 2, 14, 22, 183, 222 |
| abstract_inverted_index.main | 37 |
| abstract_inverted_index.maps | 95, 156 |
| abstract_inverted_index.that | 111, 177 |
| abstract_inverted_index.this | 49 |
| abstract_inverted_index.used | 52, 83 |
| abstract_inverted_index.well | 71 |
| abstract_inverted_index.were | 118, 163 |
| abstract_inverted_index.with | 165, 190 |
| abstract_inverted_index.year | 147 |
| abstract_inverted_index.0.80, | 126 |
| abstract_inverted_index.0.85, | 129 |
| abstract_inverted_index.0.90, | 127 |
| abstract_inverted_index.0.92, | 125 |
| abstract_inverted_index.1992, | 99 |
| abstract_inverted_index.2002, | 100 |
| abstract_inverted_index.2012, | 101 |
| abstract_inverted_index.Based | 135 |
| abstract_inverted_index.Kappa | 167 |
| abstract_inverted_index.LULC, | 12 |
| abstract_inverted_index.These | 205 |
| abstract_inverted_index.Urban | 31 |
| abstract_inverted_index.area, | 189 |
| abstract_inverted_index.based | 63 |
| abstract_inverted_index.city. | 81, 227 |
| abstract_inverted_index.cover | 4 |
| abstract_inverted_index.kappa | 116 |
| abstract_inverted_index.model | 88, 140 |
| abstract_inverted_index.offer | 215 |
| abstract_inverted_index.urban | 29, 77 |
| abstract_inverted_index.value | 168 |
| abstract_inverted_index.vital | 216 |
| abstract_inverted_index.years | 98, 159 |
| abstract_inverted_index.(LULC) | 5 |
| abstract_inverted_index.94.97% | 170 |
| abstract_inverted_index.CA-ANN | 54 |
| abstract_inverted_index.Models | 0 |
| abstract_inverted_index.areas. | 30 |
| abstract_inverted_index.around | 45 |
| abstract_inverted_index.better | 105 |
| abstract_inverted_index.buffer | 203 |
| abstract_inverted_index.causes | 38 |
| abstract_inverted_index.define | 207 |
| abstract_inverted_index.degree | 193 |
| abstract_inverted_index.forest | 86 |
| abstract_inverted_index.future | 210 |
| abstract_inverted_index.globe. | 47 |
| abstract_inverted_index.matrix | 139 |
| abstract_inverted_index.models | 57 |
| abstract_inverted_index.needs, | 16 |
| abstract_inverted_index.random | 85 |
| abstract_inverted_index.result | 109 |
| abstract_inverted_index.showed | 110 |
| abstract_inverted_index.sprawl | 32, 195 |
| abstract_inverted_index.study, | 50 |
| abstract_inverted_index.values | 117 |
| abstract_inverted_index.within | 186 |
| abstract_inverted_index.years. | 134 |
| abstract_inverted_index.zones. | 204 |
| abstract_inverted_index.93.24%, | 172 |
| abstract_inverted_index.94.24%, | 119 |
| abstract_inverted_index.Landsat | 90 |
| abstract_inverted_index.analyze | 59 |
| abstract_inverted_index.changes | 10, 75 |
| abstract_inverted_index.crucial | 7 |
| abstract_inverted_index.current | 208 |
| abstract_inverted_index.decades | 69 |
| abstract_inverted_index.erratic | 41 |
| abstract_inverted_index.highest | 192 |
| abstract_inverted_index.imagery | 91 |
| abstract_inverted_index.largest | 179 |
| abstract_inverted_index.overall | 113 |
| abstract_inverted_index.prepare | 93 |
| abstract_inverted_index.accuracy | 114 |
| abstract_inverted_index.findings | 175, 206 |
| abstract_inverted_index.guidance | 19 |
| abstract_inverted_index.indicate | 176 |
| abstract_inverted_index.observed | 196 |
| abstract_inverted_index.obtained | 150 |
| abstract_inverted_index.patterns | 66, 211 |
| abstract_inverted_index.planning | 24, 219 |
| abstract_inverted_index.previous | 68 |
| abstract_inverted_index.use/land | 3 |
| abstract_inverted_index.Sambalpur | 80, 226 |
| abstract_inverted_index.accuracy. | 107 |
| abstract_inverted_index.assessing | 9 |
| abstract_inverted_index.direction | 200 |
| abstract_inverted_index.expansion | 78 |
| abstract_inverted_index.predicted | 164 |
| abstract_inverted_index.providing | 18 |
| abstract_inverted_index.selective | 133 |
| abstract_inverted_index.underwent | 184 |
| abstract_inverted_index.variation | 42 |
| abstract_inverted_index.conversion | 185 |
| abstract_inverted_index.especially | 27 |
| abstract_inverted_index.management | 224 |
| abstract_inverted_index.proportion | 180 |
| abstract_inverted_index.settlement | 188 |
| abstract_inverted_index.simulation | 62 |
| abstract_inverted_index.transition | 138 |
| abstract_inverted_index.validated, | 152 |
| abstract_inverted_index.4-kilometer | 202 |
| abstract_inverted_index.appropriate | 21 |
| abstract_inverted_index.directional | 74 |
| abstract_inverted_index.forecasting | 13 |
| abstract_inverted_index.information | 217 |
| abstract_inverted_index.management, | 26 |
| abstract_inverted_index.sustainable | 221 |
| abstract_inverted_index.Markov-Chain | 56 |
| abstract_inverted_index.northwestern | 199 |
| abstract_inverted_index.respectively, | 130 |
| abstract_inverted_index.respectively. | 173 |
| abstract_inverted_index.subsequently, | 154 |
| abstract_inverted_index.(1992–2012), | 141 |
| abstract_inverted_index.classification | 106 |
| cited_by_percentile_year.max | 99 |
| cited_by_percentile_year.min | 98 |
| countries_distinct_count | 0 |
| institutions_distinct_count | 3 |
| citation_normalized_percentile.value | 0.97592639 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |