Subspace Perturbation Analysis for Data-Driven Radar Target Localization Article Swipe
YOU?
·
· 2023
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2303.08241
Recent works exploring data-driven approaches to classical problems in adaptive radar have demonstrated promising results pertaining to the task of radar target localization. Via the use of space-time adaptive processing (STAP) techniques and convolutional neural networks, these data-driven approaches to target localization have helped benchmark the performance of neural networks for matched scenarios. However, the thorough bridging of these topics across mismatched scenarios still remains an open problem. As such, in this work, we augment our data-driven approach to radar target localization by performing a subspace perturbation analysis, which allows us to benchmark the localization accuracy of our proposed deep learning framework across mismatched scenarios. To evaluate this framework, we generate comprehensive datasets by randomly placing targets of variable strengths in mismatched constrained areas via RFView, a high-fidelity, site-specific modeling and simulation tool. For the radar returns from these constrained areas, we generate heatmap tensors in range, azimuth, and elevation using the normalized adaptive matched filter (NAMF) test statistic. We estimate target locations from these heatmap tensors using a convolutional neural network, and demonstrate that the predictive performance of our framework in the presence of mismatches can be predetermined.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2303.08241
- https://arxiv.org/pdf/2303.08241
- OA Status
- green
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4327668980
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4327668980Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2303.08241Digital Object Identifier
- Title
-
Subspace Perturbation Analysis for Data-Driven Radar Target LocalizationWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2023Year of publication
- Publication date
-
2023-03-14Full publication date if available
- Authors
-
Shyam Venkatasubramanian, Sandeep Gogineni, Bosung Kang, Ali Pezeshki, Muralidhar Rangaswamy, Vahid TarokhList of authors in order
- Landing page
-
https://arxiv.org/abs/2303.08241Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2303.08241Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2303.08241Direct OA link when available
- Concepts
-
Computer science, Radar, Convolutional neural network, Subspace topology, Benchmark (surveying), Artificial intelligence, Artificial neural network, Machine learning, Algorithm, Geography, Telecommunications, GeodesyTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4327668980 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2303.08241 |
| ids.doi | https://doi.org/10.48550/arxiv.2303.08241 |
| ids.openalex | https://openalex.org/W4327668980 |
| fwci | |
| type | preprint |
| title | Subspace Perturbation Analysis for Data-Driven Radar Target Localization |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10466 |
| topics[0].field.id | https://openalex.org/fields/19 |
| topics[0].field.display_name | Earth and Planetary Sciences |
| topics[0].score | 0.996999979019165 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1902 |
| topics[0].subfield.display_name | Atmospheric Science |
| topics[0].display_name | Meteorological Phenomena and Simulations |
| topics[1].id | https://openalex.org/T11061 |
| topics[1].field.id | https://openalex.org/fields/19 |
| topics[1].field.display_name | Earth and Planetary Sciences |
| topics[1].score | 0.9951000213623047 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1910 |
| topics[1].subfield.display_name | Oceanography |
| topics[1].display_name | Ocean Waves and Remote Sensing |
| topics[2].id | https://openalex.org/T11405 |
| topics[2].field.id | https://openalex.org/fields/19 |
| topics[2].field.display_name | Earth and Planetary Sciences |
| topics[2].score | 0.9900000095367432 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1910 |
| topics[2].subfield.display_name | Oceanography |
| topics[2].display_name | Geophysics and Gravity Measurements |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C41008148 |
| concepts[0].level | 0 |
| concepts[0].score | 0.7392382621765137 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[0].display_name | Computer science |
| concepts[1].id | https://openalex.org/C554190296 |
| concepts[1].level | 2 |
| concepts[1].score | 0.6521117687225342 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q47528 |
| concepts[1].display_name | Radar |
| concepts[2].id | https://openalex.org/C81363708 |
| concepts[2].level | 2 |
| concepts[2].score | 0.5453519225120544 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q17084460 |
| concepts[2].display_name | Convolutional neural network |
| concepts[3].id | https://openalex.org/C32834561 |
| concepts[3].level | 2 |
| concepts[3].score | 0.5430675148963928 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q660730 |
| concepts[3].display_name | Subspace topology |
| concepts[4].id | https://openalex.org/C185798385 |
| concepts[4].level | 2 |
| concepts[4].score | 0.5292163491249084 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q1161707 |
| concepts[4].display_name | Benchmark (surveying) |
| concepts[5].id | https://openalex.org/C154945302 |
| concepts[5].level | 1 |
| concepts[5].score | 0.489850252866745 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[5].display_name | Artificial intelligence |
| concepts[6].id | https://openalex.org/C50644808 |
| concepts[6].level | 2 |
| concepts[6].score | 0.4251042902469635 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q192776 |
| concepts[6].display_name | Artificial neural network |
| concepts[7].id | https://openalex.org/C119857082 |
| concepts[7].level | 1 |
| concepts[7].score | 0.3812393546104431 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[7].display_name | Machine learning |
| concepts[8].id | https://openalex.org/C11413529 |
| concepts[8].level | 1 |
| concepts[8].score | 0.32667073607444763 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q8366 |
| concepts[8].display_name | Algorithm |
| concepts[9].id | https://openalex.org/C205649164 |
| concepts[9].level | 0 |
| concepts[9].score | 0.09150418639183044 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q1071 |
| concepts[9].display_name | Geography |
| concepts[10].id | https://openalex.org/C76155785 |
| concepts[10].level | 1 |
| concepts[10].score | 0.0 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q418 |
| concepts[10].display_name | Telecommunications |
| concepts[11].id | https://openalex.org/C13280743 |
| concepts[11].level | 1 |
| concepts[11].score | 0.0 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q131089 |
| concepts[11].display_name | Geodesy |
| keywords[0].id | https://openalex.org/keywords/computer-science |
| keywords[0].score | 0.7392382621765137 |
| keywords[0].display_name | Computer science |
| keywords[1].id | https://openalex.org/keywords/radar |
| keywords[1].score | 0.6521117687225342 |
| keywords[1].display_name | Radar |
| keywords[2].id | https://openalex.org/keywords/convolutional-neural-network |
| keywords[2].score | 0.5453519225120544 |
| keywords[2].display_name | Convolutional neural network |
| keywords[3].id | https://openalex.org/keywords/subspace-topology |
| keywords[3].score | 0.5430675148963928 |
| keywords[3].display_name | Subspace topology |
| keywords[4].id | https://openalex.org/keywords/benchmark |
| keywords[4].score | 0.5292163491249084 |
| keywords[4].display_name | Benchmark (surveying) |
| keywords[5].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[5].score | 0.489850252866745 |
| keywords[5].display_name | Artificial intelligence |
| keywords[6].id | https://openalex.org/keywords/artificial-neural-network |
| keywords[6].score | 0.4251042902469635 |
| keywords[6].display_name | Artificial neural network |
| keywords[7].id | https://openalex.org/keywords/machine-learning |
| keywords[7].score | 0.3812393546104431 |
| keywords[7].display_name | Machine learning |
| keywords[8].id | https://openalex.org/keywords/algorithm |
| keywords[8].score | 0.32667073607444763 |
| keywords[8].display_name | Algorithm |
| keywords[9].id | https://openalex.org/keywords/geography |
| keywords[9].score | 0.09150418639183044 |
| keywords[9].display_name | Geography |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2303.08241 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://arxiv.org/pdf/2303.08241 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2303.08241 |
| locations[1].id | doi:10.48550/arxiv.2303.08241 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | cc-by |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | https://openalex.org/licenses/cc-by |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2303.08241 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5058322190 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-1400-9642 |
| authorships[0].author.display_name | Shyam Venkatasubramanian |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Venkatasubramanian, Shyam |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5087227905 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-7174-9997 |
| authorships[1].author.display_name | Sandeep Gogineni |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Gogineni, Sandeep |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5075951419 |
| authorships[2].author.orcid | https://orcid.org/0000-0001-9429-4537 |
| authorships[2].author.display_name | Bosung Kang |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Kang, Bosung |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5028995727 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-7142-5685 |
| authorships[3].author.display_name | Ali Pezeshki |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Pezeshki, Ali |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5064635322 |
| authorships[4].author.orcid | https://orcid.org/0000-0003-4830-7637 |
| authorships[4].author.display_name | Muralidhar Rangaswamy |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Rangaswamy, Muralidhar |
| authorships[4].is_corresponding | False |
| authorships[5].author.id | https://openalex.org/A5020766546 |
| authorships[5].author.orcid | https://orcid.org/0000-0003-2994-6302 |
| authorships[5].author.display_name | Vahid Tarokh |
| authorships[5].author_position | last |
| authorships[5].raw_author_name | Tarokh, Vahid |
| authorships[5].is_corresponding | False |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2303.08241 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Subspace Perturbation Analysis for Data-Driven Radar Target Localization |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T10466 |
| primary_topic.field.id | https://openalex.org/fields/19 |
| primary_topic.field.display_name | Earth and Planetary Sciences |
| primary_topic.score | 0.996999979019165 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1902 |
| primary_topic.subfield.display_name | Atmospheric Science |
| primary_topic.display_name | Meteorological Phenomena and Simulations |
| related_works | https://openalex.org/W2378211422, https://openalex.org/W2745001401, https://openalex.org/W1980381208, https://openalex.org/W4321353415, https://openalex.org/W2130974462, https://openalex.org/W2028665553, https://openalex.org/W2086519370, https://openalex.org/W972276598, https://openalex.org/W2087343574, https://openalex.org/W4246352526 |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2303.08241 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2303.08241 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2303.08241 |
| primary_location.id | pmh:oai:arXiv.org:2303.08241 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://arxiv.org/pdf/2303.08241 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2303.08241 |
| publication_date | 2023-03-14 |
| publication_year | 2023 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 84, 126, 168 |
| abstract_inverted_index.As | 68 |
| abstract_inverted_index.To | 105 |
| abstract_inverted_index.We | 159 |
| abstract_inverted_index.an | 65 |
| abstract_inverted_index.be | 187 |
| abstract_inverted_index.by | 82, 113 |
| abstract_inverted_index.in | 8, 70, 120, 145, 181 |
| abstract_inverted_index.of | 19, 26, 47, 57, 96, 117, 178, 184 |
| abstract_inverted_index.to | 5, 16, 39, 78, 91 |
| abstract_inverted_index.us | 90 |
| abstract_inverted_index.we | 73, 109, 141 |
| abstract_inverted_index.For | 133 |
| abstract_inverted_index.Via | 23 |
| abstract_inverted_index.and | 32, 130, 148, 172 |
| abstract_inverted_index.can | 186 |
| abstract_inverted_index.for | 50 |
| abstract_inverted_index.our | 75, 97, 179 |
| abstract_inverted_index.the | 17, 24, 45, 54, 93, 134, 151, 175, 182 |
| abstract_inverted_index.use | 25 |
| abstract_inverted_index.via | 124 |
| abstract_inverted_index.deep | 99 |
| abstract_inverted_index.from | 137, 163 |
| abstract_inverted_index.have | 11, 42 |
| abstract_inverted_index.open | 66 |
| abstract_inverted_index.task | 18 |
| abstract_inverted_index.test | 157 |
| abstract_inverted_index.that | 174 |
| abstract_inverted_index.this | 71, 107 |
| abstract_inverted_index.areas | 123 |
| abstract_inverted_index.radar | 10, 20, 79, 135 |
| abstract_inverted_index.still | 63 |
| abstract_inverted_index.such, | 69 |
| abstract_inverted_index.these | 36, 58, 138, 164 |
| abstract_inverted_index.tool. | 132 |
| abstract_inverted_index.using | 150, 167 |
| abstract_inverted_index.which | 88 |
| abstract_inverted_index.work, | 72 |
| abstract_inverted_index.works | 1 |
| abstract_inverted_index.(NAMF) | 156 |
| abstract_inverted_index.(STAP) | 30 |
| abstract_inverted_index.Recent | 0 |
| abstract_inverted_index.across | 60, 102 |
| abstract_inverted_index.allows | 89 |
| abstract_inverted_index.areas, | 140 |
| abstract_inverted_index.filter | 155 |
| abstract_inverted_index.helped | 43 |
| abstract_inverted_index.neural | 34, 48, 170 |
| abstract_inverted_index.range, | 146 |
| abstract_inverted_index.target | 21, 40, 80, 161 |
| abstract_inverted_index.topics | 59 |
| abstract_inverted_index.RFView, | 125 |
| abstract_inverted_index.augment | 74 |
| abstract_inverted_index.heatmap | 143, 165 |
| abstract_inverted_index.matched | 51, 154 |
| abstract_inverted_index.placing | 115 |
| abstract_inverted_index.remains | 64 |
| abstract_inverted_index.results | 14 |
| abstract_inverted_index.returns | 136 |
| abstract_inverted_index.targets | 116 |
| abstract_inverted_index.tensors | 144, 166 |
| abstract_inverted_index.However, | 53 |
| abstract_inverted_index.accuracy | 95 |
| abstract_inverted_index.adaptive | 9, 28, 153 |
| abstract_inverted_index.approach | 77 |
| abstract_inverted_index.azimuth, | 147 |
| abstract_inverted_index.bridging | 56 |
| abstract_inverted_index.datasets | 112 |
| abstract_inverted_index.estimate | 160 |
| abstract_inverted_index.evaluate | 106 |
| abstract_inverted_index.generate | 110, 142 |
| abstract_inverted_index.learning | 100 |
| abstract_inverted_index.modeling | 129 |
| abstract_inverted_index.network, | 171 |
| abstract_inverted_index.networks | 49 |
| abstract_inverted_index.presence | 183 |
| abstract_inverted_index.problem. | 67 |
| abstract_inverted_index.problems | 7 |
| abstract_inverted_index.proposed | 98 |
| abstract_inverted_index.randomly | 114 |
| abstract_inverted_index.subspace | 85 |
| abstract_inverted_index.thorough | 55 |
| abstract_inverted_index.variable | 118 |
| abstract_inverted_index.analysis, | 87 |
| abstract_inverted_index.benchmark | 44, 92 |
| abstract_inverted_index.classical | 6 |
| abstract_inverted_index.elevation | 149 |
| abstract_inverted_index.exploring | 2 |
| abstract_inverted_index.framework | 101, 180 |
| abstract_inverted_index.locations | 162 |
| abstract_inverted_index.networks, | 35 |
| abstract_inverted_index.promising | 13 |
| abstract_inverted_index.scenarios | 62 |
| abstract_inverted_index.strengths | 119 |
| abstract_inverted_index.approaches | 4, 38 |
| abstract_inverted_index.framework, | 108 |
| abstract_inverted_index.mismatched | 61, 103, 121 |
| abstract_inverted_index.mismatches | 185 |
| abstract_inverted_index.normalized | 152 |
| abstract_inverted_index.performing | 83 |
| abstract_inverted_index.pertaining | 15 |
| abstract_inverted_index.predictive | 176 |
| abstract_inverted_index.processing | 29 |
| abstract_inverted_index.scenarios. | 52, 104 |
| abstract_inverted_index.simulation | 131 |
| abstract_inverted_index.space-time | 27 |
| abstract_inverted_index.statistic. | 158 |
| abstract_inverted_index.techniques | 31 |
| abstract_inverted_index.constrained | 122, 139 |
| abstract_inverted_index.data-driven | 3, 37, 76 |
| abstract_inverted_index.demonstrate | 173 |
| abstract_inverted_index.performance | 46, 177 |
| abstract_inverted_index.demonstrated | 12 |
| abstract_inverted_index.localization | 41, 81, 94 |
| abstract_inverted_index.perturbation | 86 |
| abstract_inverted_index.comprehensive | 111 |
| abstract_inverted_index.convolutional | 33, 169 |
| abstract_inverted_index.localization. | 22 |
| abstract_inverted_index.site-specific | 128 |
| abstract_inverted_index.high-fidelity, | 127 |
| abstract_inverted_index.predetermined. | 188 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 6 |
| citation_normalized_percentile |