Suitability of low and middle-income country data-derived prognostics models for benchmarking mortality in a multinational Asia critical care registry network: a multicentre study Article Swipe
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.12688/wellcomeopenres.22981.1
Background This study evaluates the predictive performance of prognostic models derived from low- and middle-income country (LMIC) data using a multinational Asian critical care dataset. The research also seeks to identify opportunities for improving these models' accuracy and utility in clinical research and for international benchmarking of critical care outcomes Methods This retrospective multicenter study evaluated the performance of four prognostic models: e-Tropical Intensive Care Score (e-TropICS), Tropical Intensive Care Score (TropICS), Simplified Mortality Score for the Intensive Care Unit (SMS-ICU), and Rwanda Mortality Probability Model (R-MPM) using a dataset of 64,327 ICU admissions from 109 ICUs across six Asian countries. The models' discriminative abilities were assessed using ROC curves, and calibration was evaluated with Hosmer-Lemeshow C-statistics and calibration curves. Recalibration was performed to improve model accuracy, and the impact of the COVID-19 pandemic on model performance was also analysed. Results The e-TropICS and R-MPM models showed relatively good discriminative power, with AUCs of 0.71 and 0.69, respectively. However, all models exhibited significant calibration issues, particularly at higher predicted probabilities, even after recalibration. The study also revealed variability in model performance across different countries, with India's data demonstrating the highest discriminative power. Conclusions The study highlights the challenges of applying existing prognostic models in diverse ICU settings, particularly in LMICs. While the e-TropICS and R-MPM models performed relatively well, significant calibration issues indicate a need for further refinement. Future efforts should focus on developing adaptable models that can effectively accommodate the diverse and dynamic nature of ICU populations worldwide, ensuring their utility in global healthcare benchmarking and decision-making.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- https://doi.org/10.12688/wellcomeopenres.22981.1
- OA Status
- gold
- References
- 27
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4404818444
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4404818444Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.12688/wellcomeopenres.22981.1Digital Object Identifier
- Title
-
Suitability of low and middle-income country data-derived prognostics models for benchmarking mortality in a multinational Asia critical care registry network: a multicentre studyWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-11-28Full publication date if available
- Authors
-
Dilanthi Gamage Dona, Diptesh Aryal, Aniruddha Ghose, Madiha Hashmi, Ranjan Nath, Mohd Basri Mat Nor, Louise Thwaites, Swagata Tripathy, Bharath Kumar Tirupakuzhi Vijayaraghavan, Lam Minh Yen, Arjen M. Dondorp, Rashan Haniffa, Krishnarajah Nirantharakumar, Andreas Karwath, Kym I E Snell, Dhruv Parekh, Abigail BeaneList of authors in order
- Landing page
-
https://doi.org/10.12688/wellcomeopenres.22981.1Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.12688/wellcomeopenres.22981.1Direct OA link when available
- Concepts
-
Benchmarking, Multinational corporation, Prognostics, Low and middle income countries, Business, Econometrics, Actuarial science, Developing country, Computer science, Economic growth, Economics, Data mining, Finance, MarketingTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- References (count)
-
27Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4404818444 |
|---|---|
| doi | https://doi.org/10.12688/wellcomeopenres.22981.1 |
| ids.doi | https://doi.org/10.12688/wellcomeopenres.22981.1 |
| ids.openalex | https://openalex.org/W4404818444 |
| fwci | 0.0 |
| type | preprint |
| title | Suitability of low and middle-income country data-derived prognostics models for benchmarking mortality in a multinational Asia critical care registry network: a multicentre study |
| awards[0].id | https://openalex.org/G5625608852 |
| awards[0].funder_id | https://openalex.org/F4320311904 |
| awards[0].funder_award_id | 215522 |
| awards[0].funder_display_name | Wellcome Trust |
| biblio.issue | |
| biblio.volume | 9 |
| biblio.last_page | 699 |
| biblio.first_page | 699 |
| grants[0].funder | https://openalex.org/F4320311904 |
| grants[0].award_id | 215522 |
| grants[0].funder_display_name | Wellcome Trust |
| topics[0].id | https://openalex.org/T10218 |
| topics[0].field.id | https://openalex.org/fields/27 |
| topics[0].field.display_name | Medicine |
| topics[0].score | 0.9818999767303467 |
| topics[0].domain.id | https://openalex.org/domains/4 |
| topics[0].domain.display_name | Health Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2713 |
| topics[0].subfield.display_name | Epidemiology |
| topics[0].display_name | Sepsis Diagnosis and Treatment |
| topics[1].id | https://openalex.org/T10804 |
| topics[1].field.id | https://openalex.org/fields/20 |
| topics[1].field.display_name | Economics, Econometrics and Finance |
| topics[1].score | 0.9660999774932861 |
| topics[1].domain.id | https://openalex.org/domains/2 |
| topics[1].domain.display_name | Social Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2002 |
| topics[1].subfield.display_name | Economics and Econometrics |
| topics[1].display_name | Health Systems, Economic Evaluations, Quality of Life |
| topics[2].id | https://openalex.org/T11700 |
| topics[2].field.id | https://openalex.org/fields/27 |
| topics[2].field.display_name | Medicine |
| topics[2].score | 0.9455999732017517 |
| topics[2].domain.id | https://openalex.org/domains/4 |
| topics[2].domain.display_name | Health Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2746 |
| topics[2].subfield.display_name | Surgery |
| topics[2].display_name | Hemodynamic Monitoring and Therapy |
| funders[0].id | https://openalex.org/F4320311904 |
| funders[0].ror | https://ror.org/029chgv08 |
| funders[0].display_name | Wellcome Trust |
| is_xpac | False |
| apc_list.value | 920 |
| apc_list.currency | GBP |
| apc_list.value_usd | 1128 |
| apc_paid.value | 920 |
| apc_paid.currency | GBP |
| apc_paid.value_usd | 1128 |
| concepts[0].id | https://openalex.org/C86251818 |
| concepts[0].level | 2 |
| concepts[0].score | 0.8233431577682495 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q816754 |
| concepts[0].display_name | Benchmarking |
| concepts[1].id | https://openalex.org/C158016649 |
| concepts[1].level | 2 |
| concepts[1].score | 0.7412641048431396 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q161726 |
| concepts[1].display_name | Multinational corporation |
| concepts[2].id | https://openalex.org/C129364497 |
| concepts[2].level | 2 |
| concepts[2].score | 0.7202310562133789 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q3042561 |
| concepts[2].display_name | Prognostics |
| concepts[3].id | https://openalex.org/C3018472363 |
| concepts[3].level | 3 |
| concepts[3].score | 0.4843696057796478 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q177323 |
| concepts[3].display_name | Low and middle income countries |
| concepts[4].id | https://openalex.org/C144133560 |
| concepts[4].level | 0 |
| concepts[4].score | 0.44678983092308044 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q4830453 |
| concepts[4].display_name | Business |
| concepts[5].id | https://openalex.org/C149782125 |
| concepts[5].level | 1 |
| concepts[5].score | 0.35363417863845825 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q160039 |
| concepts[5].display_name | Econometrics |
| concepts[6].id | https://openalex.org/C162118730 |
| concepts[6].level | 1 |
| concepts[6].score | 0.3376525640487671 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q1128453 |
| concepts[6].display_name | Actuarial science |
| concepts[7].id | https://openalex.org/C83864248 |
| concepts[7].level | 2 |
| concepts[7].score | 0.27723750472068787 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q177323 |
| concepts[7].display_name | Developing country |
| concepts[8].id | https://openalex.org/C41008148 |
| concepts[8].level | 0 |
| concepts[8].score | 0.2762565314769745 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[8].display_name | Computer science |
| concepts[9].id | https://openalex.org/C50522688 |
| concepts[9].level | 1 |
| concepts[9].score | 0.23703119158744812 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q189833 |
| concepts[9].display_name | Economic growth |
| concepts[10].id | https://openalex.org/C162324750 |
| concepts[10].level | 0 |
| concepts[10].score | 0.2340976893901825 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q8134 |
| concepts[10].display_name | Economics |
| concepts[11].id | https://openalex.org/C124101348 |
| concepts[11].level | 1 |
| concepts[11].score | 0.22742226719856262 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q172491 |
| concepts[11].display_name | Data mining |
| concepts[12].id | https://openalex.org/C10138342 |
| concepts[12].level | 1 |
| concepts[12].score | 0.13990098237991333 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q43015 |
| concepts[12].display_name | Finance |
| concepts[13].id | https://openalex.org/C162853370 |
| concepts[13].level | 1 |
| concepts[13].score | 0.10952135920524597 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q39809 |
| concepts[13].display_name | Marketing |
| keywords[0].id | https://openalex.org/keywords/benchmarking |
| keywords[0].score | 0.8233431577682495 |
| keywords[0].display_name | Benchmarking |
| keywords[1].id | https://openalex.org/keywords/multinational-corporation |
| keywords[1].score | 0.7412641048431396 |
| keywords[1].display_name | Multinational corporation |
| keywords[2].id | https://openalex.org/keywords/prognostics |
| keywords[2].score | 0.7202310562133789 |
| keywords[2].display_name | Prognostics |
| keywords[3].id | https://openalex.org/keywords/low-and-middle-income-countries |
| keywords[3].score | 0.4843696057796478 |
| keywords[3].display_name | Low and middle income countries |
| keywords[4].id | https://openalex.org/keywords/business |
| keywords[4].score | 0.44678983092308044 |
| keywords[4].display_name | Business |
| keywords[5].id | https://openalex.org/keywords/econometrics |
| keywords[5].score | 0.35363417863845825 |
| keywords[5].display_name | Econometrics |
| keywords[6].id | https://openalex.org/keywords/actuarial-science |
| keywords[6].score | 0.3376525640487671 |
| keywords[6].display_name | Actuarial science |
| keywords[7].id | https://openalex.org/keywords/developing-country |
| keywords[7].score | 0.27723750472068787 |
| keywords[7].display_name | Developing country |
| keywords[8].id | https://openalex.org/keywords/computer-science |
| keywords[8].score | 0.2762565314769745 |
| keywords[8].display_name | Computer science |
| keywords[9].id | https://openalex.org/keywords/economic-growth |
| keywords[9].score | 0.23703119158744812 |
| keywords[9].display_name | Economic growth |
| keywords[10].id | https://openalex.org/keywords/economics |
| keywords[10].score | 0.2340976893901825 |
| keywords[10].display_name | Economics |
| keywords[11].id | https://openalex.org/keywords/data-mining |
| keywords[11].score | 0.22742226719856262 |
| keywords[11].display_name | Data mining |
| keywords[12].id | https://openalex.org/keywords/finance |
| keywords[12].score | 0.13990098237991333 |
| keywords[12].display_name | Finance |
| keywords[13].id | https://openalex.org/keywords/marketing |
| keywords[13].score | 0.10952135920524597 |
| keywords[13].display_name | Marketing |
| language | en |
| locations[0].id | doi:10.12688/wellcomeopenres.22981.1 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4210218052 |
| locations[0].source.issn | 2398-502X |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2398-502X |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | Wellcome Open Research |
| locations[0].source.host_organization | https://openalex.org/P4310311838 |
| locations[0].source.host_organization_name | Wellcome |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310311838 |
| locations[0].license | cc-by |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Wellcome Open Research |
| locations[0].landing_page_url | https://doi.org/10.12688/wellcomeopenres.22981.1 |
| indexed_in | crossref, doaj |
| authorships[0].author.id | https://openalex.org/A5032896604 |
| authorships[0].author.orcid | https://orcid.org/0000-0003-4058-7670 |
| authorships[0].author.display_name | Dilanthi Gamage Dona |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Dilanthi Priyadarshani Gamage Dona |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5064727404 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-1431-8293 |
| authorships[1].author.display_name | Diptesh Aryal |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Diptesh Aryal |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5080286071 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-5551-6691 |
| authorships[2].author.display_name | Aniruddha Ghose |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Aniruddha Ghose |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5069932742 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-7332-0692 |
| authorships[3].author.display_name | Madiha Hashmi |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Madiha Hashmi |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5061003411 |
| authorships[4].author.orcid | https://orcid.org/0000-0003-1141-2994 |
| authorships[4].author.display_name | Ranjan Nath |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Ranjan Kumar Nath |
| authorships[4].is_corresponding | False |
| authorships[5].author.id | https://openalex.org/A5032356906 |
| authorships[5].author.orcid | https://orcid.org/0000-0002-5433-6357 |
| authorships[5].author.display_name | Mohd Basri Mat Nor |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Mohd Basri Mat Nor |
| authorships[5].is_corresponding | False |
| authorships[6].author.id | https://openalex.org/A5052155328 |
| authorships[6].author.orcid | https://orcid.org/0000-0002-4666-9813 |
| authorships[6].author.display_name | Louise Thwaites |
| authorships[6].author_position | middle |
| authorships[6].raw_author_name | Louise Thwaites |
| authorships[6].is_corresponding | False |
| authorships[7].author.id | https://openalex.org/A5006958992 |
| authorships[7].author.orcid | https://orcid.org/0000-0002-5315-6477 |
| authorships[7].author.display_name | Swagata Tripathy |
| authorships[7].author_position | middle |
| authorships[7].raw_author_name | Swagata Tripathy |
| authorships[7].is_corresponding | False |
| authorships[8].author.id | https://openalex.org/A5031342180 |
| authorships[8].author.orcid | https://orcid.org/0000-0002-1801-0667 |
| authorships[8].author.display_name | Bharath Kumar Tirupakuzhi Vijayaraghavan |
| authorships[8].author_position | middle |
| authorships[8].raw_author_name | Bharath Kumar Tirupakuzhi Vijayaraghavan |
| authorships[8].is_corresponding | False |
| authorships[9].author.id | https://openalex.org/A5049093237 |
| authorships[9].author.orcid | https://orcid.org/0000-0002-5126-110X |
| authorships[9].author.display_name | Lam Minh Yen |
| authorships[9].author_position | middle |
| authorships[9].raw_author_name | Lam Minh Yen |
| authorships[9].is_corresponding | False |
| authorships[10].author.id | https://openalex.org/A5051408897 |
| authorships[10].author.orcid | https://orcid.org/0000-0001-5190-2395 |
| authorships[10].author.display_name | Arjen M. Dondorp |
| authorships[10].author_position | middle |
| authorships[10].raw_author_name | Arjen M Dondorp |
| authorships[10].is_corresponding | False |
| authorships[11].author.id | https://openalex.org/A5024626733 |
| authorships[11].author.orcid | https://orcid.org/0000-0002-8288-449X |
| authorships[11].author.display_name | Rashan Haniffa |
| authorships[11].author_position | middle |
| authorships[11].raw_author_name | Rashan Haniffa |
| authorships[11].is_corresponding | False |
| authorships[12].author.id | https://openalex.org/A5016610763 |
| authorships[12].author.orcid | https://orcid.org/0000-0002-6816-1279 |
| authorships[12].author.display_name | Krishnarajah Nirantharakumar |
| authorships[12].author_position | middle |
| authorships[12].raw_author_name | Krishnarajah Nirantharakumar |
| authorships[12].is_corresponding | False |
| authorships[13].author.id | https://openalex.org/A5026210150 |
| authorships[13].author.orcid | https://orcid.org/0000-0002-6942-3760 |
| authorships[13].author.display_name | Andreas Karwath |
| authorships[13].author_position | middle |
| authorships[13].raw_author_name | Andreas Karwath |
| authorships[13].is_corresponding | False |
| authorships[14].author.id | https://openalex.org/A5049252097 |
| authorships[14].author.orcid | https://orcid.org/0000-0001-9373-6591 |
| authorships[14].author.display_name | Kym I E Snell |
| authorships[14].author_position | middle |
| authorships[14].raw_author_name | Kym Snell |
| authorships[14].is_corresponding | False |
| authorships[15].author.id | https://openalex.org/A5043836434 |
| authorships[15].author.orcid | https://orcid.org/0000-0002-1508-8362 |
| authorships[15].author.display_name | Dhruv Parekh |
| authorships[15].author_position | middle |
| authorships[15].raw_author_name | Dhruv Parekh |
| authorships[15].is_corresponding | False |
| authorships[16].author.id | https://openalex.org/A5054452776 |
| authorships[16].author.orcid | https://orcid.org/0000-0001-7046-1580 |
| authorships[16].author.display_name | Abigail Beane |
| authorships[16].author_position | last |
| authorships[16].raw_author_name | Abigail Beane |
| authorships[16].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.12688/wellcomeopenres.22981.1 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Suitability of low and middle-income country data-derived prognostics models for benchmarking mortality in a multinational Asia critical care registry network: a multicentre study |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10218 |
| primary_topic.field.id | https://openalex.org/fields/27 |
| primary_topic.field.display_name | Medicine |
| primary_topic.score | 0.9818999767303467 |
| primary_topic.domain.id | https://openalex.org/domains/4 |
| primary_topic.domain.display_name | Health Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2713 |
| primary_topic.subfield.display_name | Epidemiology |
| primary_topic.display_name | Sepsis Diagnosis and Treatment |
| related_works | https://openalex.org/W4238897586, https://openalex.org/W2310476526, https://openalex.org/W3213192587, https://openalex.org/W2144291498, https://openalex.org/W2535730979, https://openalex.org/W3193475673, https://openalex.org/W2370073012, https://openalex.org/W435179959, https://openalex.org/W4386567722, https://openalex.org/W2168646784 |
| cited_by_count | 0 |
| locations_count | 1 |
| best_oa_location.id | doi:10.12688/wellcomeopenres.22981.1 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4210218052 |
| best_oa_location.source.issn | 2398-502X |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2398-502X |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | Wellcome Open Research |
| best_oa_location.source.host_organization | https://openalex.org/P4310311838 |
| best_oa_location.source.host_organization_name | Wellcome |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310311838 |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Wellcome Open Research |
| best_oa_location.landing_page_url | https://doi.org/10.12688/wellcomeopenres.22981.1 |
| primary_location.id | doi:10.12688/wellcomeopenres.22981.1 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4210218052 |
| primary_location.source.issn | 2398-502X |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2398-502X |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | Wellcome Open Research |
| primary_location.source.host_organization | https://openalex.org/P4310311838 |
| primary_location.source.host_organization_name | Wellcome |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310311838 |
| primary_location.license | cc-by |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Wellcome Open Research |
| primary_location.landing_page_url | https://doi.org/10.12688/wellcomeopenres.22981.1 |
| publication_date | 2024-11-28 |
| publication_year | 2024 |
| referenced_works | https://openalex.org/W2003376257, https://openalex.org/W2150758100, https://openalex.org/W2398322627, https://openalex.org/W2793760051, https://openalex.org/W2734961137, https://openalex.org/W2986964657, https://openalex.org/W1493241108, https://openalex.org/W2766460907, https://openalex.org/W3030938321, https://openalex.org/W2591896812, https://openalex.org/W3115132029, https://openalex.org/W3095966968, https://openalex.org/W2106671991, https://openalex.org/W2302501749, https://openalex.org/W3182732378, https://openalex.org/W2157825442, https://openalex.org/W6632020033, https://openalex.org/W2266995761, https://openalex.org/W2154286581, https://openalex.org/W2115098571, https://openalex.org/W6629416752, https://openalex.org/W2161743657, https://openalex.org/W2107869022, https://openalex.org/W2169685811, https://openalex.org/W2474667434, https://openalex.org/W2095987352, https://openalex.org/W1489743493 |
| referenced_works_count | 27 |
| abstract_inverted_index.a | 19, 88, 223 |
| abstract_inverted_index.at | 166 |
| abstract_inverted_index.in | 39, 178, 203, 208, 252 |
| abstract_inverted_index.of | 7, 46, 58, 90, 130, 153, 198, 245 |
| abstract_inverted_index.on | 134, 232 |
| abstract_inverted_index.to | 29, 123 |
| abstract_inverted_index.109 | 95 |
| abstract_inverted_index.ICU | 92, 205, 246 |
| abstract_inverted_index.ROC | 108 |
| abstract_inverted_index.The | 25, 101, 141, 173, 193 |
| abstract_inverted_index.all | 159 |
| abstract_inverted_index.and | 13, 37, 42, 81, 110, 117, 127, 143, 155, 213, 242, 256 |
| abstract_inverted_index.can | 237 |
| abstract_inverted_index.for | 32, 43, 75, 225 |
| abstract_inverted_index.six | 98 |
| abstract_inverted_index.the | 4, 56, 76, 128, 131, 188, 196, 211, 240 |
| abstract_inverted_index.was | 112, 121, 137 |
| abstract_inverted_index.0.71 | 154 |
| abstract_inverted_index.AUCs | 152 |
| abstract_inverted_index.Care | 64, 69, 78 |
| abstract_inverted_index.ICUs | 96 |
| abstract_inverted_index.This | 1, 51 |
| abstract_inverted_index.Unit | 79 |
| abstract_inverted_index.also | 27, 138, 175 |
| abstract_inverted_index.care | 23, 48 |
| abstract_inverted_index.data | 17, 186 |
| abstract_inverted_index.even | 170 |
| abstract_inverted_index.four | 59 |
| abstract_inverted_index.from | 11, 94 |
| abstract_inverted_index.good | 148 |
| abstract_inverted_index.low- | 12 |
| abstract_inverted_index.need | 224 |
| abstract_inverted_index.that | 236 |
| abstract_inverted_index.were | 105 |
| abstract_inverted_index.with | 114, 151, 184 |
| abstract_inverted_index.0.69, | 156 |
| abstract_inverted_index.Asian | 21, 99 |
| abstract_inverted_index.Model | 85 |
| abstract_inverted_index.R-MPM | 144, 214 |
| abstract_inverted_index.Score | 65, 70, 74 |
| abstract_inverted_index.While | 210 |
| abstract_inverted_index.after | 171 |
| abstract_inverted_index.focus | 231 |
| abstract_inverted_index.model | 125, 135, 179 |
| abstract_inverted_index.seeks | 28 |
| abstract_inverted_index.study | 2, 54, 174, 194 |
| abstract_inverted_index.their | 250 |
| abstract_inverted_index.these | 34 |
| abstract_inverted_index.using | 18, 87, 107 |
| abstract_inverted_index.well, | 218 |
| abstract_inverted_index.(LMIC) | 16 |
| abstract_inverted_index.64,327 | 91 |
| abstract_inverted_index.Future | 228 |
| abstract_inverted_index.LMICs. | 209 |
| abstract_inverted_index.Rwanda | 82 |
| abstract_inverted_index.across | 97, 181 |
| abstract_inverted_index.global | 253 |
| abstract_inverted_index.higher | 167 |
| abstract_inverted_index.impact | 129 |
| abstract_inverted_index.issues | 221 |
| abstract_inverted_index.models | 9, 145, 160, 202, 215, 235 |
| abstract_inverted_index.nature | 244 |
| abstract_inverted_index.power, | 150 |
| abstract_inverted_index.power. | 191 |
| abstract_inverted_index.should | 230 |
| abstract_inverted_index.showed | 146 |
| abstract_inverted_index.(R-MPM) | 86 |
| abstract_inverted_index.India's | 185 |
| abstract_inverted_index.Methods | 50 |
| abstract_inverted_index.Results | 140 |
| abstract_inverted_index.country | 15 |
| abstract_inverted_index.curves, | 109 |
| abstract_inverted_index.curves. | 119 |
| abstract_inverted_index.dataset | 89 |
| abstract_inverted_index.derived | 10 |
| abstract_inverted_index.diverse | 204, 241 |
| abstract_inverted_index.dynamic | 243 |
| abstract_inverted_index.efforts | 229 |
| abstract_inverted_index.further | 226 |
| abstract_inverted_index.highest | 189 |
| abstract_inverted_index.improve | 124 |
| abstract_inverted_index.issues, | 164 |
| abstract_inverted_index.models' | 35, 102 |
| abstract_inverted_index.models: | 61 |
| abstract_inverted_index.utility | 38, 251 |
| abstract_inverted_index.COVID-19 | 132 |
| abstract_inverted_index.However, | 158 |
| abstract_inverted_index.Tropical | 67 |
| abstract_inverted_index.accuracy | 36 |
| abstract_inverted_index.applying | 199 |
| abstract_inverted_index.assessed | 106 |
| abstract_inverted_index.clinical | 40 |
| abstract_inverted_index.critical | 22, 47 |
| abstract_inverted_index.dataset. | 24 |
| abstract_inverted_index.ensuring | 249 |
| abstract_inverted_index.existing | 200 |
| abstract_inverted_index.identify | 30 |
| abstract_inverted_index.indicate | 222 |
| abstract_inverted_index.outcomes | 49 |
| abstract_inverted_index.pandemic | 133 |
| abstract_inverted_index.research | 26, 41 |
| abstract_inverted_index.revealed | 176 |
| abstract_inverted_index.Intensive | 63, 68, 77 |
| abstract_inverted_index.Mortality | 73, 83 |
| abstract_inverted_index.abilities | 104 |
| abstract_inverted_index.accuracy, | 126 |
| abstract_inverted_index.adaptable | 234 |
| abstract_inverted_index.analysed. | 139 |
| abstract_inverted_index.different | 182 |
| abstract_inverted_index.e-TropICS | 142, 212 |
| abstract_inverted_index.evaluated | 55, 113 |
| abstract_inverted_index.evaluates | 3 |
| abstract_inverted_index.exhibited | 161 |
| abstract_inverted_index.improving | 33 |
| abstract_inverted_index.performed | 122, 216 |
| abstract_inverted_index.predicted | 168 |
| abstract_inverted_index.settings, | 206 |
| abstract_inverted_index.(SMS-ICU), | 80 |
| abstract_inverted_index.(TropICS), | 71 |
| abstract_inverted_index.Simplified | 72 |
| abstract_inverted_index.admissions | 93 |
| abstract_inverted_index.challenges | 197 |
| abstract_inverted_index.countries, | 183 |
| abstract_inverted_index.countries. | 100 |
| abstract_inverted_index.developing | 233 |
| abstract_inverted_index.e-Tropical | 62 |
| abstract_inverted_index.healthcare | 254 |
| abstract_inverted_index.highlights | 195 |
| abstract_inverted_index.predictive | 5 |
| abstract_inverted_index.prognostic | 8, 60, 201 |
| abstract_inverted_index.relatively | 147, 217 |
| abstract_inverted_index.worldwide, | 248 |
| abstract_inverted_index.Conclusions | 192 |
| abstract_inverted_index.Probability | 84 |
| abstract_inverted_index.accommodate | 239 |
| abstract_inverted_index.calibration | 111, 118, 163, 220 |
| abstract_inverted_index.effectively | 238 |
| abstract_inverted_index.multicenter | 53 |
| abstract_inverted_index.performance | 6, 57, 136, 180 |
| abstract_inverted_index.populations | 247 |
| abstract_inverted_index.refinement. | 227 |
| abstract_inverted_index.significant | 162, 219 |
| abstract_inverted_index.variability | 177 |
| abstract_inverted_index.(e-TropICS), | 66 |
| abstract_inverted_index.C-statistics | 116 |
| abstract_inverted_index.benchmarking | 45, 255 |
| abstract_inverted_index.particularly | 165, 207 |
| abstract_inverted_index.Recalibration | 120 |
| abstract_inverted_index.demonstrating | 187 |
| abstract_inverted_index.international | 44 |
| abstract_inverted_index.middle-income | 14 |
| abstract_inverted_index.multinational | 20 |
| abstract_inverted_index.opportunities | 31 |
| abstract_inverted_index.respectively. | 157 |
| abstract_inverted_index.retrospective | 52 |
| abstract_inverted_index.discriminative | 103, 149, 190 |
| abstract_inverted_index.probabilities, | 169 |
| abstract_inverted_index.recalibration. | 172 |
| abstract_inverted_index.Hosmer-Lemeshow | 115 |
| abstract_inverted_index.<ns3:p>Background | 0 |
| abstract_inverted_index.decision-making.</ns3:p> | 257 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 17 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/10 |
| sustainable_development_goals[0].score | 0.6000000238418579 |
| sustainable_development_goals[0].display_name | Reduced inequalities |
| citation_normalized_percentile.value | 0.36923411 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |