Suitable sets for topological groups revisited Article Swipe
A discrete subset $S$ of a topological group $G$ is called a {\it suitable set} for $G$ if $S\cup \{e\}$ is closed in $G$ and the subgroup generated by $S$ is dense in $G$, where $e$ is the identity element of $G$. In this paper, the existence of suitable sets in topological groups is studied. It is proved that, for a non-separable $k_ω$-space $X$ without non-trivial convergent sequences, the $snf$-countability of $A(X)$ implies that $A(X)$ does not have a suitable set, which gives a partial answer to \cite[Problem 2.1]{TKA1997}. Moreover, the existence of suitable sets in some particular classes of linearly orderable topological groups is considered, where Theorem~\ref{t4} provides an affirmative answer to \cite[Problem 4.3]{ST2002}. Then, topological groups with an $ω^ω$-base are discussed, and every linearly orderable topological group with an $ω^ω$-base being metrizable is proved; thus it has a suitable set. Further, it follows that each topological group $G$ with an $ω^ω$-base has a suitable set whenever $G$ is a $k$-space, which gives a generalization of a well-known result in \cite{CM}. Finally, some cardinal invariant of topological groups with a suitable set are provided. Some results of this paper give some partial answers to some open problems posed in~\cite{DTA} and~\cite{TKA1997} respectively.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2508.13443
- https://arxiv.org/pdf/2508.13443
- OA Status
- green
- OpenAlex ID
- https://openalex.org/W4414991647
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4414991647Canonical identifier for this work in OpenAlex
- Title
-
Suitable sets for topological groups revisitedWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-08-19Full publication date if available
- Authors
-
Fucai Lin, J. He, Jiajia Yang, Chuan LiuList of authors in order
- Landing page
-
https://arxiv.org/abs/2508.13443Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2508.13443Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2508.13443Direct OA link when available
- Cited by
-
0Total citation count in OpenAlex
Full payload
| id | https://openalex.org/W4414991647 |
|---|---|
| doi | |
| ids.openalex | https://openalex.org/W4414991647 |
| fwci | 0.0 |
| type | preprint |
| title | Suitable sets for topological groups revisited |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T11151 |
| topics[0].field.id | https://openalex.org/fields/26 |
| topics[0].field.display_name | Mathematics |
| topics[0].score | 0.9944000244140625 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2608 |
| topics[0].subfield.display_name | Geometry and Topology |
| topics[0].display_name | Advanced Topology and Set Theory |
| topics[1].id | https://openalex.org/T10896 |
| topics[1].field.id | https://openalex.org/fields/26 |
| topics[1].field.display_name | Mathematics |
| topics[1].score | 0.958299994468689 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2610 |
| topics[1].subfield.display_name | Mathematical Physics |
| topics[1].display_name | Homotopy and Cohomology in Algebraic Topology |
| topics[2].id | https://openalex.org/T11703 |
| topics[2].field.id | https://openalex.org/fields/26 |
| topics[2].field.display_name | Mathematics |
| topics[2].score | 0.9581000208854675 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2602 |
| topics[2].subfield.display_name | Algebra and Number Theory |
| topics[2].display_name | Rings, Modules, and Algebras |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2508.13443 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2508.13443 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2508.13443 |
| indexed_in | arxiv |
| authorships[0].author.id | https://openalex.org/A5003256369 |
| authorships[0].author.orcid | https://orcid.org/0000-0003-3602-7953 |
| authorships[0].author.display_name | Fucai Lin |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Lin, Fucai |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5107395083 |
| authorships[1].author.orcid | https://orcid.org/0009-0001-3426-3453 |
| authorships[1].author.display_name | J. He |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | He, Jiamin |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5086617143 |
| authorships[2].author.orcid | https://orcid.org/0000-0001-7521-9814 |
| authorships[2].author.display_name | Jiajia Yang |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Yang, Jiajia |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5100320813 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-0695-592X |
| authorships[3].author.display_name | Chuan Liu |
| authorships[3].author_position | last |
| authorships[3].raw_author_name | Liu, Chuan |
| authorships[3].is_corresponding | False |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2508.13443 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-09T00:00:00 |
| display_name | Suitable sets for topological groups revisited |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T04:12:42.849631 |
| primary_topic.id | https://openalex.org/T11151 |
| primary_topic.field.id | https://openalex.org/fields/26 |
| primary_topic.field.display_name | Mathematics |
| primary_topic.score | 0.9944000244140625 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2608 |
| primary_topic.subfield.display_name | Geometry and Topology |
| primary_topic.display_name | Advanced Topology and Set Theory |
| cited_by_count | 0 |
| locations_count | 1 |
| best_oa_location.id | pmh:oai:arXiv.org:2508.13443 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2508.13443 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2508.13443 |
| primary_location.id | pmh:oai:arXiv.org:2508.13443 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2508.13443 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2508.13443 |
| publication_date | 2025-08-19 |
| publication_year | 2025 |
| referenced_works_count | 0 |
| abstract_inverted_index.A | 0 |
| abstract_inverted_index.a | 5, 11, 60, 78, 83, 139, 154, 160, 164, 167, 180 |
| abstract_inverted_index.In | 42 |
| abstract_inverted_index.It | 55 |
| abstract_inverted_index.an | 109, 119, 130, 151 |
| abstract_inverted_index.by | 28 |
| abstract_inverted_index.if | 17 |
| abstract_inverted_index.in | 22, 32, 50, 95, 170 |
| abstract_inverted_index.is | 9, 20, 30, 36, 53, 56, 104, 134, 159 |
| abstract_inverted_index.it | 137, 143 |
| abstract_inverted_index.of | 4, 40, 47, 70, 92, 99, 166, 176, 187 |
| abstract_inverted_index.to | 86, 112, 194 |
| abstract_inverted_index.$G$ | 8, 16, 23, 149, 158 |
| abstract_inverted_index.$S$ | 3, 29 |
| abstract_inverted_index.$X$ | 63 |
| abstract_inverted_index.$e$ | 35 |
| abstract_inverted_index.and | 24, 123 |
| abstract_inverted_index.are | 121, 183 |
| abstract_inverted_index.for | 15, 59 |
| abstract_inverted_index.has | 138, 153 |
| abstract_inverted_index.not | 76 |
| abstract_inverted_index.set | 156, 182 |
| abstract_inverted_index.the | 25, 37, 45, 68, 90 |
| abstract_inverted_index.$G$, | 33 |
| abstract_inverted_index.$G$. | 41 |
| abstract_inverted_index.Some | 185 |
| abstract_inverted_index.does | 75 |
| abstract_inverted_index.each | 146 |
| abstract_inverted_index.give | 190 |
| abstract_inverted_index.have | 77 |
| abstract_inverted_index.open | 196 |
| abstract_inverted_index.set, | 80 |
| abstract_inverted_index.set. | 141 |
| abstract_inverted_index.sets | 49, 94 |
| abstract_inverted_index.set} | 14 |
| abstract_inverted_index.some | 96, 173, 191, 195 |
| abstract_inverted_index.that | 73, 145 |
| abstract_inverted_index.this | 43, 188 |
| abstract_inverted_index.thus | 136 |
| abstract_inverted_index.with | 118, 129, 150, 179 |
| abstract_inverted_index.{\it | 12 |
| abstract_inverted_index.Then, | 115 |
| abstract_inverted_index.being | 132 |
| abstract_inverted_index.dense | 31 |
| abstract_inverted_index.every | 124 |
| abstract_inverted_index.gives | 82, 163 |
| abstract_inverted_index.group | 7, 128, 148 |
| abstract_inverted_index.paper | 189 |
| abstract_inverted_index.posed | 198 |
| abstract_inverted_index.that, | 58 |
| abstract_inverted_index.where | 34, 106 |
| abstract_inverted_index.which | 81, 162 |
| abstract_inverted_index.$A(X)$ | 71, 74 |
| abstract_inverted_index.$S\cup | 18 |
| abstract_inverted_index.\{e\}$ | 19 |
| abstract_inverted_index.answer | 85, 111 |
| abstract_inverted_index.called | 10 |
| abstract_inverted_index.closed | 21 |
| abstract_inverted_index.groups | 52, 103, 117, 178 |
| abstract_inverted_index.paper, | 44 |
| abstract_inverted_index.proved | 57 |
| abstract_inverted_index.result | 169 |
| abstract_inverted_index.subset | 2 |
| abstract_inverted_index.answers | 193 |
| abstract_inverted_index.classes | 98 |
| abstract_inverted_index.element | 39 |
| abstract_inverted_index.follows | 144 |
| abstract_inverted_index.implies | 72 |
| abstract_inverted_index.partial | 84, 192 |
| abstract_inverted_index.proved; | 135 |
| abstract_inverted_index.results | 186 |
| abstract_inverted_index.without | 64 |
| abstract_inverted_index.Finally, | 172 |
| abstract_inverted_index.Further, | 142 |
| abstract_inverted_index.cardinal | 174 |
| abstract_inverted_index.discrete | 1 |
| abstract_inverted_index.identity | 38 |
| abstract_inverted_index.linearly | 100, 125 |
| abstract_inverted_index.problems | 197 |
| abstract_inverted_index.provides | 108 |
| abstract_inverted_index.studied. | 54 |
| abstract_inverted_index.subgroup | 26 |
| abstract_inverted_index.suitable | 13, 48, 79, 93, 140, 155, 181 |
| abstract_inverted_index.whenever | 157 |
| abstract_inverted_index.Moreover, | 89 |
| abstract_inverted_index.existence | 46, 91 |
| abstract_inverted_index.generated | 27 |
| abstract_inverted_index.invariant | 175 |
| abstract_inverted_index.orderable | 101, 126 |
| abstract_inverted_index.provided. | 184 |
| abstract_inverted_index.$k$-space, | 161 |
| abstract_inverted_index.\cite{CM}. | 171 |
| abstract_inverted_index.convergent | 66 |
| abstract_inverted_index.discussed, | 122 |
| abstract_inverted_index.metrizable | 133 |
| abstract_inverted_index.particular | 97 |
| abstract_inverted_index.sequences, | 67 |
| abstract_inverted_index.well-known | 168 |
| abstract_inverted_index.affirmative | 110 |
| abstract_inverted_index.considered, | 105 |
| abstract_inverted_index.non-trivial | 65 |
| abstract_inverted_index.topological | 6, 51, 102, 116, 127, 147, 177 |
| abstract_inverted_index.$k_ω$-space | 62 |
| abstract_inverted_index.$ω^ω$-base | 120, 131, 152 |
| abstract_inverted_index.4.3]{ST2002}. | 114 |
| abstract_inverted_index.\cite[Problem | 87, 113 |
| abstract_inverted_index.in~\cite{DTA} | 199 |
| abstract_inverted_index.non-separable | 61 |
| abstract_inverted_index.respectively. | 201 |
| abstract_inverted_index.2.1]{TKA1997}. | 88 |
| abstract_inverted_index.generalization | 165 |
| abstract_inverted_index.Theorem~\ref{t4} | 107 |
| abstract_inverted_index.$snf$-countability | 69 |
| abstract_inverted_index.and~\cite{TKA1997} | 200 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 4 |
| citation_normalized_percentile.value | 0.48044192 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |