Super Resolution Generative Adversarial Network (SRGANs) for Wheat Stripe Rust Classification Article Swipe
YOU?
·
· 2021
· Open Access
·
· DOI: https://doi.org/10.3390/s21237903
Wheat yellow rust is a common agricultural disease that affects the crop every year across the world. The disease not only negatively impacts the quality of the yield but the quantity as well, which results in adverse impact on economy and food supply. It is highly desired to develop methods for fast and accurate detection of yellow rust in wheat crop; however, high-resolution images are not always available which hinders the ability of trained models in detection tasks. The approach presented in this study harnesses the power of super-resolution generative adversarial networks (SRGAN) for upsampling the images before using them to train deep learning models for the detection of wheat yellow rust. After preprocessing the data for noise removal, SRGANs are used for upsampling the images to increase their resolution which helps convolutional neural network (CNN) in learning high-quality features during training. This study empirically shows that SRGANs can be used effectively to improve the quality of images and produce significantly better results when compared with models trained using low-resolution images. This is evident from the results obtained on upsampled images, i.e., 83% of overall test accuracy, which are substantially better than the overall test accuracy achieved for low-resolution images, i.e., 75%. The proposed approach can be used in other real-world scenarios where images are of low resolution due to the unavailability of high-resolution camera in edge devices.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.3390/s21237903
- https://www.mdpi.com/1424-8220/21/23/7903/pdf?version=1638256717
- OA Status
- gold
- Cited By
- 31
- References
- 25
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W3216854021
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W3216854021Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.3390/s21237903Digital Object Identifier
- Title
-
Super Resolution Generative Adversarial Network (SRGANs) for Wheat Stripe Rust ClassificationWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2021Year of publication
- Publication date
-
2021-11-26Full publication date if available
- Authors
-
Muhammad Hassan Maqsood, Rafia Mumtaz, Ihsan Ul Haq, Uferah Shafi, Syed Mohammad Hassan Zaidi, Maryam HafeezList of authors in order
- Landing page
-
https://doi.org/10.3390/s21237903Publisher landing page
- PDF URL
-
https://www.mdpi.com/1424-8220/21/23/7903/pdf?version=1638256717Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://www.mdpi.com/1424-8220/21/23/7903/pdf?version=1638256717Direct OA link when available
- Concepts
-
Computer science, Artificial intelligence, Upsampling, Rust (programming language), Convolutional neural network, Deep learning, Preprocessor, Stripe rust, Pattern recognition (psychology), Computer vision, Machine learning, Image (mathematics), Gene, Chemistry, Programming language, Biochemistry, Plant disease resistanceTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
31Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 8, 2024: 14, 2023: 5, 2022: 4Per-year citation counts (last 5 years)
- References (count)
-
25Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W3216854021 |
|---|---|
| doi | https://doi.org/10.3390/s21237903 |
| ids.doi | https://doi.org/10.3390/s21237903 |
| ids.mag | 3216854021 |
| ids.pmid | https://pubmed.ncbi.nlm.nih.gov/34883905 |
| ids.openalex | https://openalex.org/W3216854021 |
| fwci | 2.35104802 |
| mesh[0].qualifier_ui | |
| mesh[0].descriptor_ui | D000383 |
| mesh[0].is_major_topic | False |
| mesh[0].qualifier_name | |
| mesh[0].descriptor_name | Agriculture |
| mesh[1].qualifier_ui | |
| mesh[1].descriptor_ui | D001487 |
| mesh[1].is_major_topic | True |
| mesh[1].qualifier_name | |
| mesh[1].descriptor_name | Basidiomycota |
| mesh[2].qualifier_ui | |
| mesh[2].descriptor_ui | D007091 |
| mesh[2].is_major_topic | True |
| mesh[2].qualifier_name | |
| mesh[2].descriptor_name | Image Processing, Computer-Assisted |
| mesh[3].qualifier_ui | |
| mesh[3].descriptor_ui | D016571 |
| mesh[3].is_major_topic | False |
| mesh[3].qualifier_name | |
| mesh[3].descriptor_name | Neural Networks, Computer |
| mesh[4].qualifier_ui | |
| mesh[4].descriptor_ui | D014908 |
| mesh[4].is_major_topic | False |
| mesh[4].qualifier_name | |
| mesh[4].descriptor_name | Triticum |
| mesh[5].qualifier_ui | |
| mesh[5].descriptor_ui | D000383 |
| mesh[5].is_major_topic | False |
| mesh[5].qualifier_name | |
| mesh[5].descriptor_name | Agriculture |
| mesh[6].qualifier_ui | |
| mesh[6].descriptor_ui | D001487 |
| mesh[6].is_major_topic | True |
| mesh[6].qualifier_name | |
| mesh[6].descriptor_name | Basidiomycota |
| mesh[7].qualifier_ui | |
| mesh[7].descriptor_ui | D007091 |
| mesh[7].is_major_topic | True |
| mesh[7].qualifier_name | |
| mesh[7].descriptor_name | Image Processing, Computer-Assisted |
| mesh[8].qualifier_ui | |
| mesh[8].descriptor_ui | D016571 |
| mesh[8].is_major_topic | False |
| mesh[8].qualifier_name | |
| mesh[8].descriptor_name | Neural Networks, Computer |
| mesh[9].qualifier_ui | |
| mesh[9].descriptor_ui | D014908 |
| mesh[9].is_major_topic | False |
| mesh[9].qualifier_name | |
| mesh[9].descriptor_name | Triticum |
| type | article |
| title | Super Resolution Generative Adversarial Network (SRGANs) for Wheat Stripe Rust Classification |
| biblio.issue | 23 |
| biblio.volume | 21 |
| biblio.last_page | 7903 |
| biblio.first_page | 7903 |
| topics[0].id | https://openalex.org/T11105 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9991999864578247 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1707 |
| topics[0].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[0].display_name | Advanced Image Processing Techniques |
| topics[1].id | https://openalex.org/T13114 |
| topics[1].field.id | https://openalex.org/fields/22 |
| topics[1].field.display_name | Engineering |
| topics[1].score | 0.9883000254631042 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2214 |
| topics[1].subfield.display_name | Media Technology |
| topics[1].display_name | Image Processing Techniques and Applications |
| topics[2].id | https://openalex.org/T10688 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.96670001745224 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1707 |
| topics[2].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[2].display_name | Image and Signal Denoising Methods |
| is_xpac | False |
| apc_list.value | 2400 |
| apc_list.currency | CHF |
| apc_list.value_usd | 2598 |
| apc_paid.value | 2400 |
| apc_paid.currency | CHF |
| apc_paid.value_usd | 2598 |
| concepts[0].id | https://openalex.org/C41008148 |
| concepts[0].level | 0 |
| concepts[0].score | 0.7101930975914001 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[0].display_name | Computer science |
| concepts[1].id | https://openalex.org/C154945302 |
| concepts[1].level | 1 |
| concepts[1].score | 0.6728522777557373 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[1].display_name | Artificial intelligence |
| concepts[2].id | https://openalex.org/C110384440 |
| concepts[2].level | 3 |
| concepts[2].score | 0.6399127244949341 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q1143270 |
| concepts[2].display_name | Upsampling |
| concepts[3].id | https://openalex.org/C197781089 |
| concepts[3].level | 2 |
| concepts[3].score | 0.5861809849739075 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q575650 |
| concepts[3].display_name | Rust (programming language) |
| concepts[4].id | https://openalex.org/C81363708 |
| concepts[4].level | 2 |
| concepts[4].score | 0.5520855188369751 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q17084460 |
| concepts[4].display_name | Convolutional neural network |
| concepts[5].id | https://openalex.org/C108583219 |
| concepts[5].level | 2 |
| concepts[5].score | 0.47128620743751526 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q197536 |
| concepts[5].display_name | Deep learning |
| concepts[6].id | https://openalex.org/C34736171 |
| concepts[6].level | 2 |
| concepts[6].score | 0.4692765772342682 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q918333 |
| concepts[6].display_name | Preprocessor |
| concepts[7].id | https://openalex.org/C2994440102 |
| concepts[7].level | 4 |
| concepts[7].score | 0.42369621992111206 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q56291501 |
| concepts[7].display_name | Stripe rust |
| concepts[8].id | https://openalex.org/C153180895 |
| concepts[8].level | 2 |
| concepts[8].score | 0.41060465574264526 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[8].display_name | Pattern recognition (psychology) |
| concepts[9].id | https://openalex.org/C31972630 |
| concepts[9].level | 1 |
| concepts[9].score | 0.34001100063323975 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q844240 |
| concepts[9].display_name | Computer vision |
| concepts[10].id | https://openalex.org/C119857082 |
| concepts[10].level | 1 |
| concepts[10].score | 0.32409125566482544 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[10].display_name | Machine learning |
| concepts[11].id | https://openalex.org/C115961682 |
| concepts[11].level | 2 |
| concepts[11].score | 0.21032845973968506 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q860623 |
| concepts[11].display_name | Image (mathematics) |
| concepts[12].id | https://openalex.org/C104317684 |
| concepts[12].level | 2 |
| concepts[12].score | 0.0 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q7187 |
| concepts[12].display_name | Gene |
| concepts[13].id | https://openalex.org/C185592680 |
| concepts[13].level | 0 |
| concepts[13].score | 0.0 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q2329 |
| concepts[13].display_name | Chemistry |
| concepts[14].id | https://openalex.org/C199360897 |
| concepts[14].level | 1 |
| concepts[14].score | 0.0 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q9143 |
| concepts[14].display_name | Programming language |
| concepts[15].id | https://openalex.org/C55493867 |
| concepts[15].level | 1 |
| concepts[15].score | 0.0 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q7094 |
| concepts[15].display_name | Biochemistry |
| concepts[16].id | https://openalex.org/C93678976 |
| concepts[16].level | 3 |
| concepts[16].score | 0.0 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q4215946 |
| concepts[16].display_name | Plant disease resistance |
| keywords[0].id | https://openalex.org/keywords/computer-science |
| keywords[0].score | 0.7101930975914001 |
| keywords[0].display_name | Computer science |
| keywords[1].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[1].score | 0.6728522777557373 |
| keywords[1].display_name | Artificial intelligence |
| keywords[2].id | https://openalex.org/keywords/upsampling |
| keywords[2].score | 0.6399127244949341 |
| keywords[2].display_name | Upsampling |
| keywords[3].id | https://openalex.org/keywords/rust |
| keywords[3].score | 0.5861809849739075 |
| keywords[3].display_name | Rust (programming language) |
| keywords[4].id | https://openalex.org/keywords/convolutional-neural-network |
| keywords[4].score | 0.5520855188369751 |
| keywords[4].display_name | Convolutional neural network |
| keywords[5].id | https://openalex.org/keywords/deep-learning |
| keywords[5].score | 0.47128620743751526 |
| keywords[5].display_name | Deep learning |
| keywords[6].id | https://openalex.org/keywords/preprocessor |
| keywords[6].score | 0.4692765772342682 |
| keywords[6].display_name | Preprocessor |
| keywords[7].id | https://openalex.org/keywords/stripe-rust |
| keywords[7].score | 0.42369621992111206 |
| keywords[7].display_name | Stripe rust |
| keywords[8].id | https://openalex.org/keywords/pattern-recognition |
| keywords[8].score | 0.41060465574264526 |
| keywords[8].display_name | Pattern recognition (psychology) |
| keywords[9].id | https://openalex.org/keywords/computer-vision |
| keywords[9].score | 0.34001100063323975 |
| keywords[9].display_name | Computer vision |
| keywords[10].id | https://openalex.org/keywords/machine-learning |
| keywords[10].score | 0.32409125566482544 |
| keywords[10].display_name | Machine learning |
| keywords[11].id | https://openalex.org/keywords/image |
| keywords[11].score | 0.21032845973968506 |
| keywords[11].display_name | Image (mathematics) |
| language | en |
| locations[0].id | doi:10.3390/s21237903 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S101949793 |
| locations[0].source.issn | 1424-8220 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 1424-8220 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | Sensors |
| locations[0].source.host_organization | https://openalex.org/P4310310987 |
| locations[0].source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310310987 |
| locations[0].source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://www.mdpi.com/1424-8220/21/23/7903/pdf?version=1638256717 |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Sensors |
| locations[0].landing_page_url | https://doi.org/10.3390/s21237903 |
| locations[1].id | pmid:34883905 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306525036 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | PubMed |
| locations[1].source.host_organization | https://openalex.org/I1299303238 |
| locations[1].source.host_organization_name | National Institutes of Health |
| locations[1].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | publishedVersion |
| locations[1].raw_type | |
| locations[1].license_id | |
| locations[1].is_accepted | True |
| locations[1].is_published | True |
| locations[1].raw_source_name | Sensors (Basel, Switzerland) |
| locations[1].landing_page_url | https://pubmed.ncbi.nlm.nih.gov/34883905 |
| locations[2].id | pmh:oai:doaj.org/article:77727940d6e44d9cbeb9ce79b1913598 |
| locations[2].is_oa | True |
| locations[2].source.id | https://openalex.org/S4306401280 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | False |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[2].source.host_organization | |
| locations[2].source.host_organization_name | |
| locations[2].license | cc-by-sa |
| locations[2].pdf_url | |
| locations[2].version | submittedVersion |
| locations[2].raw_type | article |
| locations[2].license_id | https://openalex.org/licenses/cc-by-sa |
| locations[2].is_accepted | False |
| locations[2].is_published | False |
| locations[2].raw_source_name | Sensors, Vol 21, Iss 23, p 7903 (2021) |
| locations[2].landing_page_url | https://doaj.org/article/77727940d6e44d9cbeb9ce79b1913598 |
| locations[3].id | pmh:oai:mdpi.com:/1424-8220/21/23/7903/ |
| locations[3].is_oa | True |
| locations[3].source.id | https://openalex.org/S4306400947 |
| locations[3].source.issn | |
| locations[3].source.type | repository |
| locations[3].source.is_oa | True |
| locations[3].source.issn_l | |
| locations[3].source.is_core | False |
| locations[3].source.is_in_doaj | False |
| locations[3].source.display_name | MDPI (MDPI AG) |
| locations[3].source.host_organization | https://openalex.org/I4210097602 |
| locations[3].source.host_organization_name | Multidisciplinary Digital Publishing Institute (Switzerland) |
| locations[3].source.host_organization_lineage | https://openalex.org/I4210097602 |
| locations[3].license | cc-by |
| locations[3].pdf_url | |
| locations[3].version | submittedVersion |
| locations[3].raw_type | Text |
| locations[3].license_id | https://openalex.org/licenses/cc-by |
| locations[3].is_accepted | False |
| locations[3].is_published | False |
| locations[3].raw_source_name | Sensors; Volume 21; Issue 23; Pages: 7903 |
| locations[3].landing_page_url | https://dx.doi.org/10.3390/s21237903 |
| locations[4].id | pmh:oai:pubmedcentral.nih.gov:8659936 |
| locations[4].is_oa | True |
| locations[4].source.id | https://openalex.org/S2764455111 |
| locations[4].source.issn | |
| locations[4].source.type | repository |
| locations[4].source.is_oa | False |
| locations[4].source.issn_l | |
| locations[4].source.is_core | False |
| locations[4].source.is_in_doaj | False |
| locations[4].source.display_name | PubMed Central |
| locations[4].source.host_organization | https://openalex.org/I1299303238 |
| locations[4].source.host_organization_name | National Institutes of Health |
| locations[4].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[4].license | other-oa |
| locations[4].pdf_url | |
| locations[4].version | submittedVersion |
| locations[4].raw_type | Text |
| locations[4].license_id | https://openalex.org/licenses/other-oa |
| locations[4].is_accepted | False |
| locations[4].is_published | False |
| locations[4].raw_source_name | Sensors (Basel) |
| locations[4].landing_page_url | https://www.ncbi.nlm.nih.gov/pmc/articles/8659936 |
| locations[5].id | pmh:oai:pure.atira.dk:publications/9d50cd68-79b6-40c2-a4de-39ef2b6617db |
| locations[5].is_oa | True |
| locations[5].source.id | https://openalex.org/S4306400216 |
| locations[5].source.issn | |
| locations[5].source.type | repository |
| locations[5].source.is_oa | False |
| locations[5].source.issn_l | |
| locations[5].source.is_core | False |
| locations[5].source.is_in_doaj | False |
| locations[5].source.display_name | Research Portal (King's College London) |
| locations[5].source.host_organization | https://openalex.org/I183935753 |
| locations[5].source.host_organization_name | King's College London |
| locations[5].source.host_organization_lineage | https://openalex.org/I183935753 |
| locations[5].license | other-oa |
| locations[5].pdf_url | |
| locations[5].version | submittedVersion |
| locations[5].raw_type | article |
| locations[5].license_id | https://openalex.org/licenses/other-oa |
| locations[5].is_accepted | False |
| locations[5].is_published | False |
| locations[5].raw_source_name | Maqsood , M H , Mumtaz , R , Haq , I U , Shafi , U , Zaidi , S M H & Hafeez , M 2021 , ' Super Resolution Generative Adversarial Network (SRGANS) for Wheat Stripe Rust Classification ' , Sensors , vol. 21 , no. 23 , 7903 . https://doi.org/10.3390/s21237903 |
| locations[5].landing_page_url | http://www.scopus.com/inward/record.url?scp=85119719751&partnerID=8YFLogxK |
| indexed_in | crossref, doaj, pubmed |
| authorships[0].author.id | https://openalex.org/A5006999097 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-3704-1899 |
| authorships[0].author.display_name | Muhammad Hassan Maqsood |
| authorships[0].countries | PK |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I929597975 |
| authorships[0].affiliations[0].raw_affiliation_string | School of Electrical Engineering and Computer Science (SEECS), National University of Sciences and Technology (NUST), Islamabad 44000, Pakistan |
| authorships[0].institutions[0].id | https://openalex.org/I929597975 |
| authorships[0].institutions[0].ror | https://ror.org/03w2j5y17 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I929597975 |
| authorships[0].institutions[0].country_code | PK |
| authorships[0].institutions[0].display_name | National University of Sciences and Technology |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Muhammad Hassan Maqsood |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | School of Electrical Engineering and Computer Science (SEECS), National University of Sciences and Technology (NUST), Islamabad 44000, Pakistan |
| authorships[1].author.id | https://openalex.org/A5057042065 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-0966-3957 |
| authorships[1].author.display_name | Rafia Mumtaz |
| authorships[1].countries | PK |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I929597975 |
| authorships[1].affiliations[0].raw_affiliation_string | School of Electrical Engineering and Computer Science (SEECS), National University of Sciences and Technology (NUST), Islamabad 44000, Pakistan |
| authorships[1].institutions[0].id | https://openalex.org/I929597975 |
| authorships[1].institutions[0].ror | https://ror.org/03w2j5y17 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I929597975 |
| authorships[1].institutions[0].country_code | PK |
| authorships[1].institutions[0].display_name | National University of Sciences and Technology |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Rafia Mumtaz |
| authorships[1].is_corresponding | True |
| authorships[1].raw_affiliation_strings | School of Electrical Engineering and Computer Science (SEECS), National University of Sciences and Technology (NUST), Islamabad 44000, Pakistan |
| authorships[2].author.id | https://openalex.org/A5102012504 |
| authorships[2].author.orcid | https://orcid.org/0009-0003-9008-7129 |
| authorships[2].author.display_name | Ihsan Ul Haq |
| authorships[2].countries | PK |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I929597975 |
| authorships[2].affiliations[0].raw_affiliation_string | School of Electrical Engineering and Computer Science (SEECS), National University of Sciences and Technology (NUST), Islamabad 44000, Pakistan |
| authorships[2].institutions[0].id | https://openalex.org/I929597975 |
| authorships[2].institutions[0].ror | https://ror.org/03w2j5y17 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I929597975 |
| authorships[2].institutions[0].country_code | PK |
| authorships[2].institutions[0].display_name | National University of Sciences and Technology |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Ihsan Ul Haq |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | School of Electrical Engineering and Computer Science (SEECS), National University of Sciences and Technology (NUST), Islamabad 44000, Pakistan |
| authorships[3].author.id | https://openalex.org/A5019883030 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-7131-5531 |
| authorships[3].author.display_name | Uferah Shafi |
| authorships[3].countries | PK |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I929597975 |
| authorships[3].affiliations[0].raw_affiliation_string | School of Electrical Engineering and Computer Science (SEECS), National University of Sciences and Technology (NUST), Islamabad 44000, Pakistan |
| authorships[3].institutions[0].id | https://openalex.org/I929597975 |
| authorships[3].institutions[0].ror | https://ror.org/03w2j5y17 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I929597975 |
| authorships[3].institutions[0].country_code | PK |
| authorships[3].institutions[0].display_name | National University of Sciences and Technology |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Uferah Shafi |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | School of Electrical Engineering and Computer Science (SEECS), National University of Sciences and Technology (NUST), Islamabad 44000, Pakistan |
| authorships[4].author.id | https://openalex.org/A5101459150 |
| authorships[4].author.orcid | https://orcid.org/0000-0002-5693-0763 |
| authorships[4].author.display_name | Syed Mohammad Hassan Zaidi |
| authorships[4].countries | PK |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I929597975 |
| authorships[4].affiliations[0].raw_affiliation_string | School of Electrical Engineering and Computer Science (SEECS), National University of Sciences and Technology (NUST), Islamabad 44000, Pakistan |
| authorships[4].institutions[0].id | https://openalex.org/I929597975 |
| authorships[4].institutions[0].ror | https://ror.org/03w2j5y17 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I929597975 |
| authorships[4].institutions[0].country_code | PK |
| authorships[4].institutions[0].display_name | National University of Sciences and Technology |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Syed Mohammad Hassan Zaidi |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | School of Electrical Engineering and Computer Science (SEECS), National University of Sciences and Technology (NUST), Islamabad 44000, Pakistan |
| authorships[5].author.id | https://openalex.org/A5090771677 |
| authorships[5].author.orcid | https://orcid.org/0000-0002-3735-1627 |
| authorships[5].author.display_name | Maryam Hafeez |
| authorships[5].countries | GB |
| authorships[5].affiliations[0].institution_ids | https://openalex.org/I133837150 |
| authorships[5].affiliations[0].raw_affiliation_string | Department of Engineering and Technology, School of Computing and Engineering, University of Huddersfield, Queensgate, Huddersfield HD1 3DH, UK |
| authorships[5].institutions[0].id | https://openalex.org/I133837150 |
| authorships[5].institutions[0].ror | https://ror.org/05t1h8f27 |
| authorships[5].institutions[0].type | education |
| authorships[5].institutions[0].lineage | https://openalex.org/I133837150 |
| authorships[5].institutions[0].country_code | GB |
| authorships[5].institutions[0].display_name | University of Huddersfield |
| authorships[5].author_position | last |
| authorships[5].raw_author_name | Maryam Hafeez |
| authorships[5].is_corresponding | False |
| authorships[5].raw_affiliation_strings | Department of Engineering and Technology, School of Computing and Engineering, University of Huddersfield, Queensgate, Huddersfield HD1 3DH, UK |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://www.mdpi.com/1424-8220/21/23/7903/pdf?version=1638256717 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Super Resolution Generative Adversarial Network (SRGANs) for Wheat Stripe Rust Classification |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T11105 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9991999864578247 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1707 |
| primary_topic.subfield.display_name | Computer Vision and Pattern Recognition |
| primary_topic.display_name | Advanced Image Processing Techniques |
| related_works | https://openalex.org/W4385863972, https://openalex.org/W1990874324, https://openalex.org/W2752385217, https://openalex.org/W2029743862, https://openalex.org/W4206921311, https://openalex.org/W3100816652, https://openalex.org/W3129870335, https://openalex.org/W4386427003, https://openalex.org/W3048094612, https://openalex.org/W2782276238 |
| cited_by_count | 31 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 8 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 14 |
| counts_by_year[2].year | 2023 |
| counts_by_year[2].cited_by_count | 5 |
| counts_by_year[3].year | 2022 |
| counts_by_year[3].cited_by_count | 4 |
| locations_count | 6 |
| best_oa_location.id | doi:10.3390/s21237903 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S101949793 |
| best_oa_location.source.issn | 1424-8220 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 1424-8220 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | Sensors |
| best_oa_location.source.host_organization | https://openalex.org/P4310310987 |
| best_oa_location.source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| best_oa_location.source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://www.mdpi.com/1424-8220/21/23/7903/pdf?version=1638256717 |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Sensors |
| best_oa_location.landing_page_url | https://doi.org/10.3390/s21237903 |
| primary_location.id | doi:10.3390/s21237903 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S101949793 |
| primary_location.source.issn | 1424-8220 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 1424-8220 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | Sensors |
| primary_location.source.host_organization | https://openalex.org/P4310310987 |
| primary_location.source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| primary_location.source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://www.mdpi.com/1424-8220/21/23/7903/pdf?version=1638256717 |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Sensors |
| primary_location.landing_page_url | https://doi.org/10.3390/s21237903 |
| publication_date | 2021-11-26 |
| publication_year | 2021 |
| referenced_works | https://openalex.org/W2955735056, https://openalex.org/W2612844455, https://openalex.org/W2900498021, https://openalex.org/W2758216428, https://openalex.org/W2799842361, https://openalex.org/W2963470893, https://openalex.org/W2964024144, https://openalex.org/W2806276686, https://openalex.org/W3199209662, https://openalex.org/W2963372104, https://openalex.org/W3046582004, https://openalex.org/W6786218853, https://openalex.org/W3168533726, https://openalex.org/W2983559280, https://openalex.org/W3036889868, https://openalex.org/W3172979605, https://openalex.org/W3124269386, https://openalex.org/W2964275574, https://openalex.org/W2791120002, https://openalex.org/W3093647646, https://openalex.org/W2912581987, https://openalex.org/W3023991509, https://openalex.org/W2006218390, https://openalex.org/W3106619131, https://openalex.org/W3123788974 |
| referenced_works_count | 25 |
| abstract_inverted_index.a | 4 |
| abstract_inverted_index.It | 43 |
| abstract_inverted_index.as | 31 |
| abstract_inverted_index.be | 149, 206 |
| abstract_inverted_index.in | 35, 58, 75, 81, 136, 208, 225 |
| abstract_inverted_index.is | 3, 44, 172 |
| abstract_inverted_index.of | 25, 55, 72, 87, 108, 156, 183, 215, 222 |
| abstract_inverted_index.on | 38, 178 |
| abstract_inverted_index.to | 47, 100, 126, 152, 219 |
| abstract_inverted_index.83% | 182 |
| abstract_inverted_index.The | 17, 78, 202 |
| abstract_inverted_index.and | 40, 52, 158 |
| abstract_inverted_index.are | 64, 120, 188, 214 |
| abstract_inverted_index.but | 28 |
| abstract_inverted_index.can | 148, 205 |
| abstract_inverted_index.due | 218 |
| abstract_inverted_index.for | 50, 93, 105, 116, 122, 197 |
| abstract_inverted_index.low | 216 |
| abstract_inverted_index.not | 19, 65 |
| abstract_inverted_index.the | 10, 15, 23, 26, 29, 70, 85, 95, 106, 114, 124, 154, 175, 192, 220 |
| abstract_inverted_index.75%. | 201 |
| abstract_inverted_index.This | 142, 171 |
| abstract_inverted_index.crop | 11 |
| abstract_inverted_index.data | 115 |
| abstract_inverted_index.deep | 102 |
| abstract_inverted_index.edge | 226 |
| abstract_inverted_index.fast | 51 |
| abstract_inverted_index.food | 41 |
| abstract_inverted_index.from | 174 |
| abstract_inverted_index.only | 20 |
| abstract_inverted_index.rust | 2, 57 |
| abstract_inverted_index.test | 185, 194 |
| abstract_inverted_index.than | 191 |
| abstract_inverted_index.that | 8, 146 |
| abstract_inverted_index.them | 99 |
| abstract_inverted_index.this | 82 |
| abstract_inverted_index.used | 121, 150, 207 |
| abstract_inverted_index.when | 163 |
| abstract_inverted_index.with | 165 |
| abstract_inverted_index.year | 13 |
| abstract_inverted_index.(CNN) | 135 |
| abstract_inverted_index.After | 112 |
| abstract_inverted_index.Wheat | 0 |
| abstract_inverted_index.crop; | 60 |
| abstract_inverted_index.every | 12 |
| abstract_inverted_index.helps | 131 |
| abstract_inverted_index.i.e., | 181, 200 |
| abstract_inverted_index.noise | 117 |
| abstract_inverted_index.other | 209 |
| abstract_inverted_index.power | 86 |
| abstract_inverted_index.rust. | 111 |
| abstract_inverted_index.shows | 145 |
| abstract_inverted_index.study | 83, 143 |
| abstract_inverted_index.their | 128 |
| abstract_inverted_index.train | 101 |
| abstract_inverted_index.using | 98, 168 |
| abstract_inverted_index.well, | 32 |
| abstract_inverted_index.wheat | 59, 109 |
| abstract_inverted_index.where | 212 |
| abstract_inverted_index.which | 33, 68, 130, 187 |
| abstract_inverted_index.yield | 27 |
| abstract_inverted_index.SRGANs | 119, 147 |
| abstract_inverted_index.across | 14 |
| abstract_inverted_index.always | 66 |
| abstract_inverted_index.before | 97 |
| abstract_inverted_index.better | 161, 190 |
| abstract_inverted_index.camera | 224 |
| abstract_inverted_index.common | 5 |
| abstract_inverted_index.during | 140 |
| abstract_inverted_index.highly | 45 |
| abstract_inverted_index.images | 63, 96, 125, 157, 213 |
| abstract_inverted_index.impact | 37 |
| abstract_inverted_index.models | 74, 104, 166 |
| abstract_inverted_index.neural | 133 |
| abstract_inverted_index.tasks. | 77 |
| abstract_inverted_index.world. | 16 |
| abstract_inverted_index.yellow | 1, 56, 110 |
| abstract_inverted_index.(SRGAN) | 92 |
| abstract_inverted_index.ability | 71 |
| abstract_inverted_index.adverse | 36 |
| abstract_inverted_index.affects | 9 |
| abstract_inverted_index.desired | 46 |
| abstract_inverted_index.develop | 48 |
| abstract_inverted_index.disease | 7, 18 |
| abstract_inverted_index.economy | 39 |
| abstract_inverted_index.evident | 173 |
| abstract_inverted_index.hinders | 69 |
| abstract_inverted_index.images, | 180, 199 |
| abstract_inverted_index.images. | 170 |
| abstract_inverted_index.impacts | 22 |
| abstract_inverted_index.improve | 153 |
| abstract_inverted_index.methods | 49 |
| abstract_inverted_index.network | 134 |
| abstract_inverted_index.overall | 184, 193 |
| abstract_inverted_index.produce | 159 |
| abstract_inverted_index.quality | 24, 155 |
| abstract_inverted_index.results | 34, 162, 176 |
| abstract_inverted_index.supply. | 42 |
| abstract_inverted_index.trained | 73, 167 |
| abstract_inverted_index.accuracy | 195 |
| abstract_inverted_index.accurate | 53 |
| abstract_inverted_index.achieved | 196 |
| abstract_inverted_index.approach | 79, 204 |
| abstract_inverted_index.compared | 164 |
| abstract_inverted_index.devices. | 227 |
| abstract_inverted_index.features | 139 |
| abstract_inverted_index.however, | 61 |
| abstract_inverted_index.increase | 127 |
| abstract_inverted_index.learning | 103, 137 |
| abstract_inverted_index.networks | 91 |
| abstract_inverted_index.obtained | 177 |
| abstract_inverted_index.proposed | 203 |
| abstract_inverted_index.quantity | 30 |
| abstract_inverted_index.removal, | 118 |
| abstract_inverted_index.accuracy, | 186 |
| abstract_inverted_index.available | 67 |
| abstract_inverted_index.detection | 54, 76, 107 |
| abstract_inverted_index.harnesses | 84 |
| abstract_inverted_index.presented | 80 |
| abstract_inverted_index.scenarios | 211 |
| abstract_inverted_index.training. | 141 |
| abstract_inverted_index.upsampled | 179 |
| abstract_inverted_index.generative | 89 |
| abstract_inverted_index.negatively | 21 |
| abstract_inverted_index.real-world | 210 |
| abstract_inverted_index.resolution | 129, 217 |
| abstract_inverted_index.upsampling | 94, 123 |
| abstract_inverted_index.adversarial | 90 |
| abstract_inverted_index.effectively | 151 |
| abstract_inverted_index.empirically | 144 |
| abstract_inverted_index.agricultural | 6 |
| abstract_inverted_index.high-quality | 138 |
| abstract_inverted_index.convolutional | 132 |
| abstract_inverted_index.preprocessing | 113 |
| abstract_inverted_index.significantly | 160 |
| abstract_inverted_index.substantially | 189 |
| abstract_inverted_index.low-resolution | 169, 198 |
| abstract_inverted_index.unavailability | 221 |
| abstract_inverted_index.high-resolution | 62, 223 |
| abstract_inverted_index.super-resolution | 88 |
| cited_by_percentile_year.max | 99 |
| cited_by_percentile_year.min | 97 |
| corresponding_author_ids | https://openalex.org/A5057042065 |
| countries_distinct_count | 2 |
| institutions_distinct_count | 6 |
| corresponding_institution_ids | https://openalex.org/I929597975 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/2 |
| sustainable_development_goals[0].score | 0.7300000190734863 |
| sustainable_development_goals[0].display_name | Zero hunger |
| citation_normalized_percentile.value | 0.90354619 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |