Super-resolution of satellite-derived SST data via Generative Adversarial Networks Article Swipe
YOU?
·
· 2025
· Open Access
·
In this work, we address the super-resolution problem of satellite-derived sea surface temperature (SST) using deep generative models. Although standard gap-filling techniques are effective in producing spatially complete datasets, they inherently smooth out fine-scale features that may be critical for a better understanding of the ocean dynamics. We investigate the use of deep learning models as Autoencoders (AEs) and generative models as Conditional-Generative Adversarial Networks (C-GANs), to reconstruct small-scale structures lost during interpolation. Our supervised -- model free -- training is based on SST observations of the Mediterranean Sea, with a focus on learning the conditional distribution of high-resolution fields given their low-resolution counterparts. We apply a tiling and merging strategy to deal with limited observational coverage and to ensure spatial continuity. Quantitative evaluations based on mean squared error metrics, spectral analysis, and gradient statistics show that while the AE reduces reconstruction error, it fails to recover high-frequency variability. In contrast, the C-GAN effectively restores the statistical properties of the true SST field at the cost of increasing the pointwise discrepancy with the ground truth observation. Our results highlight the potential of deep generative models to enhance the physical and statistical realism of gap-filled satellite data in oceanographic applications.
Related Topics
- Type
- article
- Landing Page
- http://arxiv.org/abs/2511.22610
- https://arxiv.org/pdf/2511.22610
- OA Status
- green
- OpenAlex ID
- https://openalex.org/W7108248320
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W7108248320Canonical identifier for this work in OpenAlex
- Title
-
Super-resolution of satellite-derived SST data via Generative Adversarial NetworksWork title
- Type
-
articleOpenAlex work type
- Publication year
-
2025Year of publication
- Publication date
-
2025-11-27Full publication date if available
- Authors
-
Fanelli, Claudia, LI Tiany, Biferale, Luca, Nardelli, Bruno Buongiorno, Ciani, Daniele, Pisano Andrea, Buzzicotti, MicheleList of authors in order
- Landing page
-
https://arxiv.org/abs/2511.22610Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2511.22610Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2511.22610Direct OA link when available
- Concepts
-
Pointwise, Generative grammar, Computer science, Artificial intelligence, Deep learning, Ground truth, Focus (optics), Statistical model, Machine learning, Adversarial system, Field (mathematics), Probability distribution, Generative model, Data-driven, Mean squared error, Pattern recognition (psychology), Deep belief network, Missing data, Benchmark (surveying), Conditional probability distribution, Data point, Algorithm, Data mining, Data modelingTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
Full payload
| id | https://openalex.org/W7108248320 |
|---|---|
| doi | |
| ids.openalex | https://openalex.org/W7108248320 |
| fwci | |
| type | article |
| title | Super-resolution of satellite-derived SST data via Generative Adversarial Networks |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C2777984123 |
| concepts[0].level | 2 |
| concepts[0].score | 0.7603761553764343 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q9248237 |
| concepts[0].display_name | Pointwise |
| concepts[1].id | https://openalex.org/C39890363 |
| concepts[1].level | 2 |
| concepts[1].score | 0.643156886100769 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q36108 |
| concepts[1].display_name | Generative grammar |
| concepts[2].id | https://openalex.org/C41008148 |
| concepts[2].level | 0 |
| concepts[2].score | 0.6119727492332458 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[2].display_name | Computer science |
| concepts[3].id | https://openalex.org/C154945302 |
| concepts[3].level | 1 |
| concepts[3].score | 0.6048991084098816 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[3].display_name | Artificial intelligence |
| concepts[4].id | https://openalex.org/C108583219 |
| concepts[4].level | 2 |
| concepts[4].score | 0.557658314704895 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q197536 |
| concepts[4].display_name | Deep learning |
| concepts[5].id | https://openalex.org/C146849305 |
| concepts[5].level | 2 |
| concepts[5].score | 0.5438961386680603 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q370766 |
| concepts[5].display_name | Ground truth |
| concepts[6].id | https://openalex.org/C192209626 |
| concepts[6].level | 2 |
| concepts[6].score | 0.5313364267349243 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q190909 |
| concepts[6].display_name | Focus (optics) |
| concepts[7].id | https://openalex.org/C114289077 |
| concepts[7].level | 2 |
| concepts[7].score | 0.4923933744430542 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q3284399 |
| concepts[7].display_name | Statistical model |
| concepts[8].id | https://openalex.org/C119857082 |
| concepts[8].level | 1 |
| concepts[8].score | 0.4718587100505829 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[8].display_name | Machine learning |
| concepts[9].id | https://openalex.org/C37736160 |
| concepts[9].level | 2 |
| concepts[9].score | 0.44410958886146545 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q1801315 |
| concepts[9].display_name | Adversarial system |
| concepts[10].id | https://openalex.org/C9652623 |
| concepts[10].level | 2 |
| concepts[10].score | 0.4028792679309845 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q190109 |
| concepts[10].display_name | Field (mathematics) |
| concepts[11].id | https://openalex.org/C149441793 |
| concepts[11].level | 2 |
| concepts[11].score | 0.3523874282836914 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q200726 |
| concepts[11].display_name | Probability distribution |
| concepts[12].id | https://openalex.org/C167966045 |
| concepts[12].level | 3 |
| concepts[12].score | 0.3111664056777954 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q5532625 |
| concepts[12].display_name | Generative model |
| concepts[13].id | https://openalex.org/C2780440489 |
| concepts[13].level | 2 |
| concepts[13].score | 0.2972974181175232 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q5227278 |
| concepts[13].display_name | Data-driven |
| concepts[14].id | https://openalex.org/C139945424 |
| concepts[14].level | 2 |
| concepts[14].score | 0.2940799593925476 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q1940696 |
| concepts[14].display_name | Mean squared error |
| concepts[15].id | https://openalex.org/C153180895 |
| concepts[15].level | 2 |
| concepts[15].score | 0.2840939462184906 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[15].display_name | Pattern recognition (psychology) |
| concepts[16].id | https://openalex.org/C97385483 |
| concepts[16].level | 3 |
| concepts[16].score | 0.2803856134414673 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q16954980 |
| concepts[16].display_name | Deep belief network |
| concepts[17].id | https://openalex.org/C9357733 |
| concepts[17].level | 2 |
| concepts[17].score | 0.278902143239975 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q6878417 |
| concepts[17].display_name | Missing data |
| concepts[18].id | https://openalex.org/C185798385 |
| concepts[18].level | 2 |
| concepts[18].score | 0.27279651165008545 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q1161707 |
| concepts[18].display_name | Benchmark (surveying) |
| concepts[19].id | https://openalex.org/C43555835 |
| concepts[19].level | 2 |
| concepts[19].score | 0.2667464017868042 |
| concepts[19].wikidata | https://www.wikidata.org/wiki/Q2300258 |
| concepts[19].display_name | Conditional probability distribution |
| concepts[20].id | https://openalex.org/C21080849 |
| concepts[20].level | 2 |
| concepts[20].score | 0.26477307081222534 |
| concepts[20].wikidata | https://www.wikidata.org/wiki/Q13611879 |
| concepts[20].display_name | Data point |
| concepts[21].id | https://openalex.org/C11413529 |
| concepts[21].level | 1 |
| concepts[21].score | 0.26303476095199585 |
| concepts[21].wikidata | https://www.wikidata.org/wiki/Q8366 |
| concepts[21].display_name | Algorithm |
| concepts[22].id | https://openalex.org/C124101348 |
| concepts[22].level | 1 |
| concepts[22].score | 0.26046550273895264 |
| concepts[22].wikidata | https://www.wikidata.org/wiki/Q172491 |
| concepts[22].display_name | Data mining |
| concepts[23].id | https://openalex.org/C67186912 |
| concepts[23].level | 2 |
| concepts[23].score | 0.2596653401851654 |
| concepts[23].wikidata | https://www.wikidata.org/wiki/Q367664 |
| concepts[23].display_name | Data modeling |
| keywords[0].id | https://openalex.org/keywords/pointwise |
| keywords[0].score | 0.7603761553764343 |
| keywords[0].display_name | Pointwise |
| keywords[1].id | https://openalex.org/keywords/generative-grammar |
| keywords[1].score | 0.643156886100769 |
| keywords[1].display_name | Generative grammar |
| keywords[2].id | https://openalex.org/keywords/deep-learning |
| keywords[2].score | 0.557658314704895 |
| keywords[2].display_name | Deep learning |
| keywords[3].id | https://openalex.org/keywords/ground-truth |
| keywords[3].score | 0.5438961386680603 |
| keywords[3].display_name | Ground truth |
| keywords[4].id | https://openalex.org/keywords/focus |
| keywords[4].score | 0.5313364267349243 |
| keywords[4].display_name | Focus (optics) |
| keywords[5].id | https://openalex.org/keywords/statistical-model |
| keywords[5].score | 0.4923933744430542 |
| keywords[5].display_name | Statistical model |
| keywords[6].id | https://openalex.org/keywords/adversarial-system |
| keywords[6].score | 0.44410958886146545 |
| keywords[6].display_name | Adversarial system |
| keywords[7].id | https://openalex.org/keywords/field |
| keywords[7].score | 0.4028792679309845 |
| keywords[7].display_name | Field (mathematics) |
| language | |
| locations[0].id | pmh:oai:arXiv.org:2511.22610 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2511.22610 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2511.22610 |
| indexed_in | arxiv |
| authorships[0].author.id | |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Fanelli, Claudia |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Fanelli, Claudia |
| authorships[0].is_corresponding | True |
| authorships[1].author.id | https://openalex.org/A5002285942 |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | LI Tiany |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Li, Tiany |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A3162334934 |
| authorships[2].author.orcid | |
| authorships[2].author.display_name | Biferale, Luca |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Biferale, Luca |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | |
| authorships[3].author.orcid | |
| authorships[3].author.display_name | Nardelli, Bruno Buongiorno |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Nardelli, Bruno Buongiorno |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A4360490730 |
| authorships[4].author.orcid | |
| authorships[4].author.display_name | Ciani, Daniele |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Ciani, Daniele |
| authorships[4].is_corresponding | False |
| authorships[5].author.id | https://openalex.org/A3211549085 |
| authorships[5].author.orcid | |
| authorships[5].author.display_name | Pisano Andrea |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Pisano, Andrea |
| authorships[5].is_corresponding | False |
| authorships[6].author.id | https://openalex.org/A4222825298 |
| authorships[6].author.orcid | |
| authorships[6].author.display_name | Buzzicotti, Michele |
| authorships[6].author_position | last |
| authorships[6].raw_author_name | Buzzicotti, Michele |
| authorships[6].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2511.22610 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-12-03T00:00:00 |
| display_name | Super-resolution of satellite-derived SST data via Generative Adversarial Networks |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-12-03T00:07:38.036990 |
| primary_topic | |
| cited_by_count | 0 |
| locations_count | 1 |
| best_oa_location.id | pmh:oai:arXiv.org:2511.22610 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2511.22610 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2511.22610 |
| primary_location.id | pmh:oai:arXiv.org:2511.22610 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2511.22610 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2511.22610 |
| publication_date | 2025-11-27 |
| publication_year | 2025 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 40, 90, 106 |
| abstract_inverted_index.-- | 75, 78 |
| abstract_inverted_index.AE | 139 |
| abstract_inverted_index.In | 0, 149 |
| abstract_inverted_index.We | 47, 104 |
| abstract_inverted_index.as | 55, 61 |
| abstract_inverted_index.at | 163 |
| abstract_inverted_index.be | 37 |
| abstract_inverted_index.in | 24, 196 |
| abstract_inverted_index.is | 80 |
| abstract_inverted_index.it | 143 |
| abstract_inverted_index.of | 8, 43, 51, 85, 97, 158, 166, 181, 192 |
| abstract_inverted_index.on | 82, 92, 125 |
| abstract_inverted_index.to | 66, 111, 118, 145, 185 |
| abstract_inverted_index.we | 3 |
| abstract_inverted_index.Our | 73, 176 |
| abstract_inverted_index.SST | 83, 161 |
| abstract_inverted_index.and | 58, 108, 117, 132, 189 |
| abstract_inverted_index.are | 22 |
| abstract_inverted_index.for | 39 |
| abstract_inverted_index.may | 36 |
| abstract_inverted_index.out | 32 |
| abstract_inverted_index.sea | 10 |
| abstract_inverted_index.the | 5, 44, 49, 86, 94, 138, 151, 155, 159, 164, 168, 172, 179, 187 |
| abstract_inverted_index.use | 50 |
| abstract_inverted_index.Sea, | 88 |
| abstract_inverted_index.cost | 165 |
| abstract_inverted_index.data | 195 |
| abstract_inverted_index.deal | 112 |
| abstract_inverted_index.deep | 15, 52, 182 |
| abstract_inverted_index.free | 77 |
| abstract_inverted_index.lost | 70 |
| abstract_inverted_index.mean | 126 |
| abstract_inverted_index.show | 135 |
| abstract_inverted_index.that | 35, 136 |
| abstract_inverted_index.they | 29 |
| abstract_inverted_index.this | 1 |
| abstract_inverted_index.true | 160 |
| abstract_inverted_index.with | 89, 113, 171 |
| abstract_inverted_index.(AEs) | 57 |
| abstract_inverted_index.(SST) | 13 |
| abstract_inverted_index.C-GAN | 152 |
| abstract_inverted_index.apply | 105 |
| abstract_inverted_index.based | 81, 124 |
| abstract_inverted_index.error | 128 |
| abstract_inverted_index.fails | 144 |
| abstract_inverted_index.field | 162 |
| abstract_inverted_index.focus | 91 |
| abstract_inverted_index.given | 100 |
| abstract_inverted_index.model | 76 |
| abstract_inverted_index.ocean | 45 |
| abstract_inverted_index.their | 101 |
| abstract_inverted_index.truth | 174 |
| abstract_inverted_index.using | 14 |
| abstract_inverted_index.while | 137 |
| abstract_inverted_index.work, | 2 |
| abstract_inverted_index.better | 41 |
| abstract_inverted_index.during | 71 |
| abstract_inverted_index.ensure | 119 |
| abstract_inverted_index.error, | 142 |
| abstract_inverted_index.fields | 99 |
| abstract_inverted_index.ground | 173 |
| abstract_inverted_index.models | 54, 60, 184 |
| abstract_inverted_index.smooth | 31 |
| abstract_inverted_index.tiling | 107 |
| abstract_inverted_index.address | 4 |
| abstract_inverted_index.enhance | 186 |
| abstract_inverted_index.limited | 114 |
| abstract_inverted_index.merging | 109 |
| abstract_inverted_index.models. | 17 |
| abstract_inverted_index.problem | 7 |
| abstract_inverted_index.realism | 191 |
| abstract_inverted_index.recover | 146 |
| abstract_inverted_index.reduces | 140 |
| abstract_inverted_index.results | 177 |
| abstract_inverted_index.spatial | 120 |
| abstract_inverted_index.squared | 127 |
| abstract_inverted_index.surface | 11 |
| abstract_inverted_index.Although | 18 |
| abstract_inverted_index.Networks | 64 |
| abstract_inverted_index.complete | 27 |
| abstract_inverted_index.coverage | 116 |
| abstract_inverted_index.critical | 38 |
| abstract_inverted_index.features | 34 |
| abstract_inverted_index.gradient | 133 |
| abstract_inverted_index.learning | 53, 93 |
| abstract_inverted_index.metrics, | 129 |
| abstract_inverted_index.physical | 188 |
| abstract_inverted_index.restores | 154 |
| abstract_inverted_index.spectral | 130 |
| abstract_inverted_index.standard | 19 |
| abstract_inverted_index.strategy | 110 |
| abstract_inverted_index.training | 79 |
| abstract_inverted_index.(C-GANs), | 65 |
| abstract_inverted_index.analysis, | 131 |
| abstract_inverted_index.contrast, | 150 |
| abstract_inverted_index.datasets, | 28 |
| abstract_inverted_index.dynamics. | 46 |
| abstract_inverted_index.effective | 23 |
| abstract_inverted_index.highlight | 178 |
| abstract_inverted_index.pointwise | 169 |
| abstract_inverted_index.potential | 180 |
| abstract_inverted_index.producing | 25 |
| abstract_inverted_index.satellite | 194 |
| abstract_inverted_index.spatially | 26 |
| abstract_inverted_index.fine-scale | 33 |
| abstract_inverted_index.gap-filled | 193 |
| abstract_inverted_index.generative | 16, 59, 183 |
| abstract_inverted_index.increasing | 167 |
| abstract_inverted_index.inherently | 30 |
| abstract_inverted_index.properties | 157 |
| abstract_inverted_index.statistics | 134 |
| abstract_inverted_index.structures | 69 |
| abstract_inverted_index.supervised | 74 |
| abstract_inverted_index.techniques | 21 |
| abstract_inverted_index.Adversarial | 63 |
| abstract_inverted_index.conditional | 95 |
| abstract_inverted_index.continuity. | 121 |
| abstract_inverted_index.discrepancy | 170 |
| abstract_inverted_index.effectively | 153 |
| abstract_inverted_index.evaluations | 123 |
| abstract_inverted_index.gap-filling | 20 |
| abstract_inverted_index.investigate | 48 |
| abstract_inverted_index.reconstruct | 67 |
| abstract_inverted_index.small-scale | 68 |
| abstract_inverted_index.statistical | 156, 190 |
| abstract_inverted_index.temperature | 12 |
| abstract_inverted_index.Autoencoders | 56 |
| abstract_inverted_index.Quantitative | 122 |
| abstract_inverted_index.distribution | 96 |
| abstract_inverted_index.observation. | 175 |
| abstract_inverted_index.observations | 84 |
| abstract_inverted_index.variability. | 148 |
| abstract_inverted_index.Mediterranean | 87 |
| abstract_inverted_index.applications. | 198 |
| abstract_inverted_index.counterparts. | 103 |
| abstract_inverted_index.observational | 115 |
| abstract_inverted_index.oceanographic | 197 |
| abstract_inverted_index.understanding | 42 |
| abstract_inverted_index.high-frequency | 147 |
| abstract_inverted_index.interpolation. | 72 |
| abstract_inverted_index.low-resolution | 102 |
| abstract_inverted_index.reconstruction | 141 |
| abstract_inverted_index.high-resolution | 98 |
| abstract_inverted_index.super-resolution | 6 |
| abstract_inverted_index.satellite-derived | 9 |
| abstract_inverted_index.Conditional-Generative | 62 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 7 |
| citation_normalized_percentile |