Super-Resolution Reconstruction of 3T-Like Images From 0.35T MRI Using a Hybrid Attention Residual Network Article Swipe
YOU?
·
· 2022
· Open Access
·
· DOI: https://doi.org/10.1109/access.2022.3155226
Magnetic resonance (MR) images from low-field scanners present poorer signal-to-noise ratios (SNRs) than those from high-field scanners at the same spatial resolution. To obtain a clinically acceptable SNR, radiologists operating the low-field scanners use a much smaller acquisition matrix than high-field scanners. Thus, the current state of the image quality indicates the need for further research to improve the image quality of low-field systems. Strategies based on super-resolution (SR) techniques can be alternatives for image reconstruction. However, predetermined degradation methods embedded in these techniques, such as bicubic downsampling, seem to impose a performance drop when the actual degradation is different from the pre-defined assumption. In this study, we collected a unique dataset by scanning 70 participants to address this problem. The anatomical locations of the scanned image slices were the same for 0.35T and 3T data. Low-resolution (LR) images (0.35T) and high-resolution (HR) images (3T) were the image pairs used for data training. Herein, we introduce a novel CNN-based network with hybrid attention mechanisms (HybridAttentionResNet, HARN) to adaptively capture diverse information and reconstruct super-resolution 0.35T MR images (3T-like MR images). Specifically, the proposed dense block combines variant dense blocks and attention blocks to extract abundant features from LR images. The experimental results demonstrate that our proposed residual network efficiently recovers significant textures while rendering a high peak signal-to-noise ratio (PSNR) and an appealing structural similarity index (SSIM). Moreover, an extensive subjective-mean-opinion-score (SMOS) proves to be promising in the clinical application using HARN.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1109/access.2022.3155226
- https://ieeexplore.ieee.org/ielx7/6287639/9668973/09722854.pdf
- OA Status
- gold
- Cited By
- 11
- References
- 29
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4214594272
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4214594272Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1109/access.2022.3155226Digital Object Identifier
- Title
-
Super-Resolution Reconstruction of 3T-Like Images From 0.35T MRI Using a Hybrid Attention Residual NetworkWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2022Year of publication
- Publication date
-
2022-01-01Full publication date if available
- Authors
-
Jialiang Jiang, Fulang Qi, Huiyu Du, Jianan Xu, Yufu Zhou, Dayong Gao, Bensheng QiuList of authors in order
- Landing page
-
https://doi.org/10.1109/access.2022.3155226Publisher landing page
- PDF URL
-
https://ieeexplore.ieee.org/ielx7/6287639/9668973/09722854.pdfDirect link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://ieeexplore.ieee.org/ielx7/6287639/9668973/09722854.pdfDirect OA link when available
- Concepts
-
Residual, Computer science, Iterative reconstruction, Artificial intelligence, Computer vision, Resolution (logic), Image resolution, Pattern recognition (psychology), AlgorithmTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
11Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 2, 2024: 6, 2023: 3Per-year citation counts (last 5 years)
- References (count)
-
29Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4214594272 |
|---|---|
| doi | https://doi.org/10.1109/access.2022.3155226 |
| ids.doi | https://doi.org/10.1109/access.2022.3155226 |
| ids.openalex | https://openalex.org/W4214594272 |
| fwci | 1.36170981 |
| type | article |
| title | Super-Resolution Reconstruction of 3T-Like Images From 0.35T MRI Using a Hybrid Attention Residual Network |
| awards[0].id | https://openalex.org/G1422326947 |
| awards[0].funder_id | https://openalex.org/F4320335787 |
| awards[0].display_name | |
| awards[0].funder_award_id | WK5290000002 |
| awards[0].funder_display_name | Fundamental Research Funds for the Central Universities |
| awards[1].id | https://openalex.org/G4073200200 |
| awards[1].funder_id | https://openalex.org/F4320335787 |
| awards[1].display_name | |
| awards[1].funder_award_id | WK5290000001 |
| awards[1].funder_display_name | Fundamental Research Funds for the Central Universities |
| awards[2].id | https://openalex.org/G6866708008 |
| awards[2].funder_id | https://openalex.org/F4320321001 |
| awards[2].display_name | |
| awards[2].funder_award_id | 81627806 |
| awards[2].funder_display_name | National Natural Science Foundation of China |
| awards[3].id | https://openalex.org/G5011078321 |
| awards[3].funder_id | https://openalex.org/F4320321001 |
| awards[3].display_name | |
| awards[3].funder_award_id | 91859121 |
| awards[3].funder_display_name | National Natural Science Foundation of China |
| biblio.issue | |
| biblio.volume | 10 |
| biblio.last_page | 32821 |
| biblio.first_page | 32810 |
| topics[0].id | https://openalex.org/T11105 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9995999932289124 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1707 |
| topics[0].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[0].display_name | Advanced Image Processing Techniques |
| topics[1].id | https://openalex.org/T10378 |
| topics[1].field.id | https://openalex.org/fields/27 |
| topics[1].field.display_name | Medicine |
| topics[1].score | 0.993399977684021 |
| topics[1].domain.id | https://openalex.org/domains/4 |
| topics[1].domain.display_name | Health Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2741 |
| topics[1].subfield.display_name | Radiology, Nuclear Medicine and Imaging |
| topics[1].display_name | Advanced MRI Techniques and Applications |
| topics[2].id | https://openalex.org/T10522 |
| topics[2].field.id | https://openalex.org/fields/27 |
| topics[2].field.display_name | Medicine |
| topics[2].score | 0.9923999905586243 |
| topics[2].domain.id | https://openalex.org/domains/4 |
| topics[2].domain.display_name | Health Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2741 |
| topics[2].subfield.display_name | Radiology, Nuclear Medicine and Imaging |
| topics[2].display_name | Medical Imaging Techniques and Applications |
| funders[0].id | https://openalex.org/F4320321001 |
| funders[0].ror | https://ror.org/01h0zpd94 |
| funders[0].display_name | National Natural Science Foundation of China |
| funders[1].id | https://openalex.org/F4320335787 |
| funders[1].ror | |
| funders[1].display_name | Fundamental Research Funds for the Central Universities |
| is_xpac | False |
| apc_list.value | 1850 |
| apc_list.currency | USD |
| apc_list.value_usd | 1850 |
| apc_paid.value | 1850 |
| apc_paid.currency | USD |
| apc_paid.value_usd | 1850 |
| concepts[0].id | https://openalex.org/C155512373 |
| concepts[0].level | 2 |
| concepts[0].score | 0.8533595204353333 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q287450 |
| concepts[0].display_name | Residual |
| concepts[1].id | https://openalex.org/C41008148 |
| concepts[1].level | 0 |
| concepts[1].score | 0.614277184009552 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[1].display_name | Computer science |
| concepts[2].id | https://openalex.org/C141379421 |
| concepts[2].level | 2 |
| concepts[2].score | 0.587953507900238 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q6094427 |
| concepts[2].display_name | Iterative reconstruction |
| concepts[3].id | https://openalex.org/C154945302 |
| concepts[3].level | 1 |
| concepts[3].score | 0.48434722423553467 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[3].display_name | Artificial intelligence |
| concepts[4].id | https://openalex.org/C31972630 |
| concepts[4].level | 1 |
| concepts[4].score | 0.44467616081237793 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q844240 |
| concepts[4].display_name | Computer vision |
| concepts[5].id | https://openalex.org/C138268822 |
| concepts[5].level | 2 |
| concepts[5].score | 0.4288707673549652 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q1051925 |
| concepts[5].display_name | Resolution (logic) |
| concepts[6].id | https://openalex.org/C205372480 |
| concepts[6].level | 2 |
| concepts[6].score | 0.4113810360431671 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q210521 |
| concepts[6].display_name | Image resolution |
| concepts[7].id | https://openalex.org/C153180895 |
| concepts[7].level | 2 |
| concepts[7].score | 0.3416839838027954 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[7].display_name | Pattern recognition (psychology) |
| concepts[8].id | https://openalex.org/C11413529 |
| concepts[8].level | 1 |
| concepts[8].score | 0.16895076632499695 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q8366 |
| concepts[8].display_name | Algorithm |
| keywords[0].id | https://openalex.org/keywords/residual |
| keywords[0].score | 0.8533595204353333 |
| keywords[0].display_name | Residual |
| keywords[1].id | https://openalex.org/keywords/computer-science |
| keywords[1].score | 0.614277184009552 |
| keywords[1].display_name | Computer science |
| keywords[2].id | https://openalex.org/keywords/iterative-reconstruction |
| keywords[2].score | 0.587953507900238 |
| keywords[2].display_name | Iterative reconstruction |
| keywords[3].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[3].score | 0.48434722423553467 |
| keywords[3].display_name | Artificial intelligence |
| keywords[4].id | https://openalex.org/keywords/computer-vision |
| keywords[4].score | 0.44467616081237793 |
| keywords[4].display_name | Computer vision |
| keywords[5].id | https://openalex.org/keywords/resolution |
| keywords[5].score | 0.4288707673549652 |
| keywords[5].display_name | Resolution (logic) |
| keywords[6].id | https://openalex.org/keywords/image-resolution |
| keywords[6].score | 0.4113810360431671 |
| keywords[6].display_name | Image resolution |
| keywords[7].id | https://openalex.org/keywords/pattern-recognition |
| keywords[7].score | 0.3416839838027954 |
| keywords[7].display_name | Pattern recognition (psychology) |
| keywords[8].id | https://openalex.org/keywords/algorithm |
| keywords[8].score | 0.16895076632499695 |
| keywords[8].display_name | Algorithm |
| language | en |
| locations[0].id | doi:10.1109/access.2022.3155226 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S2485537415 |
| locations[0].source.issn | 2169-3536 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2169-3536 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | IEEE Access |
| locations[0].source.host_organization | https://openalex.org/P4310319808 |
| locations[0].source.host_organization_name | Institute of Electrical and Electronics Engineers |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310319808 |
| locations[0].source.host_organization_lineage_names | Institute of Electrical and Electronics Engineers |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://ieeexplore.ieee.org/ielx7/6287639/9668973/09722854.pdf |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | IEEE Access |
| locations[0].landing_page_url | https://doi.org/10.1109/access.2022.3155226 |
| locations[1].id | pmh:oai:doaj.org/article:2d75265f62e04bb295d08e8c2929a117 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306401280 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[1].source.host_organization | |
| locations[1].source.host_organization_name | |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | IEEE Access, Vol 10, Pp 32810-32821 (2022) |
| locations[1].landing_page_url | https://doaj.org/article/2d75265f62e04bb295d08e8c2929a117 |
| indexed_in | crossref, doaj |
| authorships[0].author.id | https://openalex.org/A5104219154 |
| authorships[0].author.orcid | https://orcid.org/0009-0000-8965-549X |
| authorships[0].author.display_name | Jialiang Jiang |
| authorships[0].countries | CN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I126520041 |
| authorships[0].affiliations[0].raw_affiliation_string | Center for Biomedical Imaging, University of Science and Technology of China, Hefei, China |
| authorships[0].institutions[0].id | https://openalex.org/I126520041 |
| authorships[0].institutions[0].ror | https://ror.org/04c4dkn09 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I126520041, https://openalex.org/I19820366 |
| authorships[0].institutions[0].country_code | CN |
| authorships[0].institutions[0].display_name | University of Science and Technology of China |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Jialiang Jiang |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Center for Biomedical Imaging, University of Science and Technology of China, Hefei, China |
| authorships[1].author.id | https://openalex.org/A5048038370 |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | Fulang Qi |
| authorships[1].countries | CN |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I126520041 |
| authorships[1].affiliations[0].raw_affiliation_string | Center for Biomedical Imaging, University of Science and Technology of China, Hefei, China |
| authorships[1].institutions[0].id | https://openalex.org/I126520041 |
| authorships[1].institutions[0].ror | https://ror.org/04c4dkn09 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I126520041, https://openalex.org/I19820366 |
| authorships[1].institutions[0].country_code | CN |
| authorships[1].institutions[0].display_name | University of Science and Technology of China |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Fulang Qi |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Center for Biomedical Imaging, University of Science and Technology of China, Hefei, China |
| authorships[2].author.id | https://openalex.org/A5112965378 |
| authorships[2].author.orcid | |
| authorships[2].author.display_name | Huiyu Du |
| authorships[2].countries | CN |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I126520041 |
| authorships[2].affiliations[0].raw_affiliation_string | Center for Biomedical Imaging, University of Science and Technology of China, Hefei, China |
| authorships[2].institutions[0].id | https://openalex.org/I126520041 |
| authorships[2].institutions[0].ror | https://ror.org/04c4dkn09 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I126520041, https://openalex.org/I19820366 |
| authorships[2].institutions[0].country_code | CN |
| authorships[2].institutions[0].display_name | University of Science and Technology of China |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Huiyu Du |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Center for Biomedical Imaging, University of Science and Technology of China, Hefei, China |
| authorships[3].author.id | https://openalex.org/A5002396124 |
| authorships[3].author.orcid | https://orcid.org/0000-0001-7874-4665 |
| authorships[3].author.display_name | Jianan Xu |
| authorships[3].countries | CN |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I126520041 |
| authorships[3].affiliations[0].raw_affiliation_string | Center for Biomedical Imaging, University of Science and Technology of China, Hefei, China |
| authorships[3].institutions[0].id | https://openalex.org/I126520041 |
| authorships[3].institutions[0].ror | https://ror.org/04c4dkn09 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I126520041, https://openalex.org/I19820366 |
| authorships[3].institutions[0].country_code | CN |
| authorships[3].institutions[0].display_name | University of Science and Technology of China |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Jianan Xu |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Center for Biomedical Imaging, University of Science and Technology of China, Hefei, China |
| authorships[4].author.id | https://openalex.org/A5018929999 |
| authorships[4].author.orcid | https://orcid.org/0009-0009-5861-0438 |
| authorships[4].author.display_name | Yufu Zhou |
| authorships[4].countries | CN |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I126520041 |
| authorships[4].affiliations[0].raw_affiliation_string | Center for Biomedical Imaging, University of Science and Technology of China, Hefei, China |
| authorships[4].institutions[0].id | https://openalex.org/I126520041 |
| authorships[4].institutions[0].ror | https://ror.org/04c4dkn09 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I126520041, https://openalex.org/I19820366 |
| authorships[4].institutions[0].country_code | CN |
| authorships[4].institutions[0].display_name | University of Science and Technology of China |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Yufu Zhou |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | Center for Biomedical Imaging, University of Science and Technology of China, Hefei, China |
| authorships[5].author.id | https://openalex.org/A5101462558 |
| authorships[5].author.orcid | https://orcid.org/0000-0002-0501-2444 |
| authorships[5].author.display_name | Dayong Gao |
| authorships[5].countries | US |
| authorships[5].affiliations[0].institution_ids | https://openalex.org/I201448701 |
| authorships[5].affiliations[0].raw_affiliation_string | Department of Mechanical Engineering, University of Washington, Seattle, WA, USA |
| authorships[5].institutions[0].id | https://openalex.org/I201448701 |
| authorships[5].institutions[0].ror | https://ror.org/00cvxb145 |
| authorships[5].institutions[0].type | education |
| authorships[5].institutions[0].lineage | https://openalex.org/I201448701 |
| authorships[5].institutions[0].country_code | US |
| authorships[5].institutions[0].display_name | University of Washington |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Dayong Gao |
| authorships[5].is_corresponding | False |
| authorships[5].raw_affiliation_strings | Department of Mechanical Engineering, University of Washington, Seattle, WA, USA |
| authorships[6].author.id | https://openalex.org/A5028613953 |
| authorships[6].author.orcid | |
| authorships[6].author.display_name | Bensheng Qiu |
| authorships[6].countries | CN |
| authorships[6].affiliations[0].institution_ids | https://openalex.org/I126520041 |
| authorships[6].affiliations[0].raw_affiliation_string | Center for Biomedical Imaging, University of Science and Technology of China, Hefei, China |
| authorships[6].institutions[0].id | https://openalex.org/I126520041 |
| authorships[6].institutions[0].ror | https://ror.org/04c4dkn09 |
| authorships[6].institutions[0].type | education |
| authorships[6].institutions[0].lineage | https://openalex.org/I126520041, https://openalex.org/I19820366 |
| authorships[6].institutions[0].country_code | CN |
| authorships[6].institutions[0].display_name | University of Science and Technology of China |
| authorships[6].author_position | last |
| authorships[6].raw_author_name | Bensheng Qiu |
| authorships[6].is_corresponding | False |
| authorships[6].raw_affiliation_strings | Center for Biomedical Imaging, University of Science and Technology of China, Hefei, China |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://ieeexplore.ieee.org/ielx7/6287639/9668973/09722854.pdf |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Super-Resolution Reconstruction of 3T-Like Images From 0.35T MRI Using a Hybrid Attention Residual Network |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T11105 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9995999932289124 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1707 |
| primary_topic.subfield.display_name | Computer Vision and Pattern Recognition |
| primary_topic.display_name | Advanced Image Processing Techniques |
| related_works | https://openalex.org/W2362774332, https://openalex.org/W4249245269, https://openalex.org/W2765548132, https://openalex.org/W2025681766, https://openalex.org/W2542402767, https://openalex.org/W3023086044, https://openalex.org/W2294441925, https://openalex.org/W2142226356, https://openalex.org/W3210000161, https://openalex.org/W3103111272 |
| cited_by_count | 11 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 2 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 6 |
| counts_by_year[2].year | 2023 |
| counts_by_year[2].cited_by_count | 3 |
| locations_count | 2 |
| best_oa_location.id | doi:10.1109/access.2022.3155226 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S2485537415 |
| best_oa_location.source.issn | 2169-3536 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2169-3536 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | IEEE Access |
| best_oa_location.source.host_organization | https://openalex.org/P4310319808 |
| best_oa_location.source.host_organization_name | Institute of Electrical and Electronics Engineers |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310319808 |
| best_oa_location.source.host_organization_lineage_names | Institute of Electrical and Electronics Engineers |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://ieeexplore.ieee.org/ielx7/6287639/9668973/09722854.pdf |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | IEEE Access |
| best_oa_location.landing_page_url | https://doi.org/10.1109/access.2022.3155226 |
| primary_location.id | doi:10.1109/access.2022.3155226 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S2485537415 |
| primary_location.source.issn | 2169-3536 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2169-3536 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | IEEE Access |
| primary_location.source.host_organization | https://openalex.org/P4310319808 |
| primary_location.source.host_organization_name | Institute of Electrical and Electronics Engineers |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310319808 |
| primary_location.source.host_organization_lineage_names | Institute of Electrical and Electronics Engineers |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://ieeexplore.ieee.org/ielx7/6287639/9668973/09722854.pdf |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | IEEE Access |
| primary_location.landing_page_url | https://doi.org/10.1109/access.2022.3155226 |
| publication_date | 2022-01-01 |
| publication_year | 2022 |
| referenced_works | https://openalex.org/W2005503451, https://openalex.org/W6679441566, https://openalex.org/W947897035, https://openalex.org/W2165939075, https://openalex.org/W2887695188, https://openalex.org/W2113524221, https://openalex.org/W2163480287, https://openalex.org/W2587341032, https://openalex.org/W54257720, https://openalex.org/W2503339013, https://openalex.org/W2242218935, https://openalex.org/W2963372104, https://openalex.org/W2780544323, https://openalex.org/W3012570989, https://openalex.org/W2906473494, https://openalex.org/W3127982698, https://openalex.org/W2136145485, https://openalex.org/W2884585870, https://openalex.org/W2117140276, https://openalex.org/W1849277567, https://openalex.org/W6730179637, https://openalex.org/W6637373629, https://openalex.org/W2133665775, https://openalex.org/W6697974390, https://openalex.org/W6631190155, https://openalex.org/W4210484151, https://openalex.org/W3202624106, https://openalex.org/W3124561108, https://openalex.org/W2132920546 |
| referenced_works_count | 29 |
| abstract_inverted_index.a | 24, 34, 91, 109, 156, 214 |
| abstract_inverted_index.3T | 134 |
| abstract_inverted_index.70 | 114 |
| abstract_inverted_index.In | 104 |
| abstract_inverted_index.LR | 197 |
| abstract_inverted_index.MR | 175, 178 |
| abstract_inverted_index.To | 22 |
| abstract_inverted_index.an | 221, 228 |
| abstract_inverted_index.as | 85 |
| abstract_inverted_index.at | 17 |
| abstract_inverted_index.be | 71, 234 |
| abstract_inverted_index.by | 112 |
| abstract_inverted_index.in | 81, 236 |
| abstract_inverted_index.is | 98 |
| abstract_inverted_index.of | 46, 61, 123 |
| abstract_inverted_index.on | 66 |
| abstract_inverted_index.to | 56, 89, 116, 166, 192, 233 |
| abstract_inverted_index.we | 107, 154 |
| abstract_inverted_index.The | 120, 199 |
| abstract_inverted_index.and | 133, 140, 171, 189, 220 |
| abstract_inverted_index.can | 70 |
| abstract_inverted_index.for | 53, 73, 131, 150 |
| abstract_inverted_index.our | 204 |
| abstract_inverted_index.the | 18, 30, 43, 47, 51, 58, 95, 101, 124, 129, 146, 181, 237 |
| abstract_inverted_index.use | 33 |
| abstract_inverted_index.(3T) | 144 |
| abstract_inverted_index.(HR) | 142 |
| abstract_inverted_index.(LR) | 137 |
| abstract_inverted_index.(MR) | 2 |
| abstract_inverted_index.(SR) | 68 |
| abstract_inverted_index.SNR, | 27 |
| abstract_inverted_index.data | 151 |
| abstract_inverted_index.drop | 93 |
| abstract_inverted_index.from | 4, 14, 100, 196 |
| abstract_inverted_index.high | 215 |
| abstract_inverted_index.much | 35 |
| abstract_inverted_index.need | 52 |
| abstract_inverted_index.peak | 216 |
| abstract_inverted_index.same | 19, 130 |
| abstract_inverted_index.seem | 88 |
| abstract_inverted_index.such | 84 |
| abstract_inverted_index.than | 12, 39 |
| abstract_inverted_index.that | 203 |
| abstract_inverted_index.this | 105, 118 |
| abstract_inverted_index.used | 149 |
| abstract_inverted_index.were | 128, 145 |
| abstract_inverted_index.when | 94 |
| abstract_inverted_index.with | 160 |
| abstract_inverted_index.0.35T | 132, 174 |
| abstract_inverted_index.HARN) | 165 |
| abstract_inverted_index.HARN. | 241 |
| abstract_inverted_index.Thus, | 42 |
| abstract_inverted_index.based | 65 |
| abstract_inverted_index.block | 184 |
| abstract_inverted_index.data. | 135 |
| abstract_inverted_index.dense | 183, 187 |
| abstract_inverted_index.image | 48, 59, 74, 126, 147 |
| abstract_inverted_index.index | 225 |
| abstract_inverted_index.novel | 157 |
| abstract_inverted_index.pairs | 148 |
| abstract_inverted_index.ratio | 218 |
| abstract_inverted_index.state | 45 |
| abstract_inverted_index.these | 82 |
| abstract_inverted_index.those | 13 |
| abstract_inverted_index.using | 240 |
| abstract_inverted_index.while | 212 |
| abstract_inverted_index.(PSNR) | 219 |
| abstract_inverted_index.(SMOS) | 231 |
| abstract_inverted_index.(SNRs) | 11 |
| abstract_inverted_index.actual | 96 |
| abstract_inverted_index.blocks | 188, 191 |
| abstract_inverted_index.hybrid | 161 |
| abstract_inverted_index.images | 3, 138, 143, 176 |
| abstract_inverted_index.impose | 90 |
| abstract_inverted_index.matrix | 38 |
| abstract_inverted_index.obtain | 23 |
| abstract_inverted_index.poorer | 8 |
| abstract_inverted_index.proves | 232 |
| abstract_inverted_index.ratios | 10 |
| abstract_inverted_index.slices | 127 |
| abstract_inverted_index.study, | 106 |
| abstract_inverted_index.unique | 110 |
| abstract_inverted_index.(0.35T) | 139 |
| abstract_inverted_index.(SSIM). | 226 |
| abstract_inverted_index.Herein, | 153 |
| abstract_inverted_index.address | 117 |
| abstract_inverted_index.bicubic | 86 |
| abstract_inverted_index.capture | 168 |
| abstract_inverted_index.current | 44 |
| abstract_inverted_index.dataset | 111 |
| abstract_inverted_index.diverse | 169 |
| abstract_inverted_index.extract | 193 |
| abstract_inverted_index.further | 54 |
| abstract_inverted_index.images. | 198 |
| abstract_inverted_index.improve | 57 |
| abstract_inverted_index.methods | 79 |
| abstract_inverted_index.network | 159, 207 |
| abstract_inverted_index.present | 7 |
| abstract_inverted_index.quality | 49, 60 |
| abstract_inverted_index.results | 201 |
| abstract_inverted_index.scanned | 125 |
| abstract_inverted_index.smaller | 36 |
| abstract_inverted_index.spatial | 20 |
| abstract_inverted_index.variant | 186 |
| abstract_inverted_index.(3T-like | 177 |
| abstract_inverted_index.However, | 76 |
| abstract_inverted_index.Magnetic | 0 |
| abstract_inverted_index.abundant | 194 |
| abstract_inverted_index.clinical | 238 |
| abstract_inverted_index.combines | 185 |
| abstract_inverted_index.embedded | 80 |
| abstract_inverted_index.features | 195 |
| abstract_inverted_index.images). | 179 |
| abstract_inverted_index.problem. | 119 |
| abstract_inverted_index.proposed | 182, 205 |
| abstract_inverted_index.recovers | 209 |
| abstract_inverted_index.research | 55 |
| abstract_inverted_index.residual | 206 |
| abstract_inverted_index.scanners | 6, 16, 32 |
| abstract_inverted_index.scanning | 113 |
| abstract_inverted_index.systems. | 63 |
| abstract_inverted_index.textures | 211 |
| abstract_inverted_index.CNN-based | 158 |
| abstract_inverted_index.Moreover, | 227 |
| abstract_inverted_index.appealing | 222 |
| abstract_inverted_index.attention | 162, 190 |
| abstract_inverted_index.collected | 108 |
| abstract_inverted_index.different | 99 |
| abstract_inverted_index.extensive | 229 |
| abstract_inverted_index.indicates | 50 |
| abstract_inverted_index.introduce | 155 |
| abstract_inverted_index.locations | 122 |
| abstract_inverted_index.low-field | 5, 31, 62 |
| abstract_inverted_index.operating | 29 |
| abstract_inverted_index.promising | 235 |
| abstract_inverted_index.rendering | 213 |
| abstract_inverted_index.resonance | 1 |
| abstract_inverted_index.scanners. | 41 |
| abstract_inverted_index.training. | 152 |
| abstract_inverted_index.Strategies | 64 |
| abstract_inverted_index.acceptable | 26 |
| abstract_inverted_index.adaptively | 167 |
| abstract_inverted_index.anatomical | 121 |
| abstract_inverted_index.clinically | 25 |
| abstract_inverted_index.high-field | 15, 40 |
| abstract_inverted_index.mechanisms | 163 |
| abstract_inverted_index.similarity | 224 |
| abstract_inverted_index.structural | 223 |
| abstract_inverted_index.techniques | 69 |
| abstract_inverted_index.acquisition | 37 |
| abstract_inverted_index.application | 239 |
| abstract_inverted_index.assumption. | 103 |
| abstract_inverted_index.degradation | 78, 97 |
| abstract_inverted_index.demonstrate | 202 |
| abstract_inverted_index.efficiently | 208 |
| abstract_inverted_index.information | 170 |
| abstract_inverted_index.performance | 92 |
| abstract_inverted_index.pre-defined | 102 |
| abstract_inverted_index.reconstruct | 172 |
| abstract_inverted_index.resolution. | 21 |
| abstract_inverted_index.significant | 210 |
| abstract_inverted_index.techniques, | 83 |
| abstract_inverted_index.alternatives | 72 |
| abstract_inverted_index.experimental | 200 |
| abstract_inverted_index.participants | 115 |
| abstract_inverted_index.radiologists | 28 |
| abstract_inverted_index.Specifically, | 180 |
| abstract_inverted_index.downsampling, | 87 |
| abstract_inverted_index.predetermined | 77 |
| abstract_inverted_index.Low-resolution | 136 |
| abstract_inverted_index.high-resolution | 141 |
| abstract_inverted_index.reconstruction. | 75 |
| abstract_inverted_index.signal-to-noise | 9, 217 |
| abstract_inverted_index.super-resolution | 67, 173 |
| abstract_inverted_index.(HybridAttentionResNet, | 164 |
| abstract_inverted_index.subjective-mean-opinion-score | 230 |
| cited_by_percentile_year.max | 98 |
| cited_by_percentile_year.min | 95 |
| countries_distinct_count | 2 |
| institutions_distinct_count | 7 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/1 |
| sustainable_development_goals[0].score | 0.7099999785423279 |
| sustainable_development_goals[0].display_name | No poverty |
| citation_normalized_percentile.value | 0.79658287 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |