Super-Resolution Reconstruction of Sonograms Using Residual Dense Conditional Generative Adversarial Network Article Swipe
A method for super-resolution reconstruction of sonograms based on Residual Dense Conditional Generative Adversarial Network (RDC-GAN) is proposed in this paper. It is well known that the resolution of medical ultrasound images is limited, and the single-frame image super-resolution algorithms based on a convolutional neural network are prone to losing texture details, extracting much fewer features, and then blurring the reconstructed images. Therefore, it is very important to reconstruct high-resolution medical images in terms of retaining textured details. A Generative Adversarial Network could learn the mapping relationship between low-resolution and high-resolution images. Based on GAN, a new network is designed, where the generation network is composed of dense residual modules. On the one hand, low-resolution (LR) images are input into the dense residual network, then the multi-level features of images are learned, and then are fused into the global residual features. On the other hand, conditional variables are introduced into a discriminator network to guide the process of super-resolution image reconstruction. The proposed method could realize four times magnification reconstruction of medical ultrasound images. Compared with classical algorithms including Bicubic, SRGAN, and SRCNN, experimental results show that the super-resolution effect of medical ultrasound images based on RDC-GAN could be effectively improved, both in objective numerical evaluation and subjective visual assessment. Moreover, the application of super-resolution reconstructed images to stage the diagnosis of cirrhosis is discussed and the accuracy rates prove the practicality in contrast to the original images.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.3390/s25216694
- https://www.mdpi.com/1424-8220/25/21/6694/pdf?version=1762075432
- OA Status
- gold
- References
- 28
- OpenAlex ID
- https://openalex.org/W4415820040
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4415820040Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.3390/s25216694Digital Object Identifier
- Title
-
Super-Resolution Reconstruction of Sonograms Using Residual Dense Conditional Generative Adversarial NetworkWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-11-02Full publication date if available
- Authors
-
Zengbo Xu, Yiheng WeiList of authors in order
- Landing page
-
https://doi.org/10.3390/s25216694Publisher landing page
- PDF URL
-
https://www.mdpi.com/1424-8220/25/21/6694/pdf?version=1762075432Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://www.mdpi.com/1424-8220/25/21/6694/pdf?version=1762075432Direct OA link when available
- Cited by
-
0Total citation count in OpenAlex
- References (count)
-
28Number of works referenced by this work
Full payload
| id | https://openalex.org/W4415820040 |
|---|---|
| doi | https://doi.org/10.3390/s25216694 |
| ids.doi | https://doi.org/10.3390/s25216694 |
| ids.pmid | https://pubmed.ncbi.nlm.nih.gov/41228917 |
| ids.openalex | https://openalex.org/W4415820040 |
| fwci | |
| type | article |
| title | Super-Resolution Reconstruction of Sonograms Using Residual Dense Conditional Generative Adversarial Network |
| biblio.issue | 21 |
| biblio.volume | 25 |
| biblio.last_page | 6694 |
| biblio.first_page | 6694 |
| is_xpac | False |
| apc_list.value | 2400 |
| apc_list.currency | CHF |
| apc_list.value_usd | 2598 |
| apc_paid.value | 2400 |
| apc_paid.currency | CHF |
| apc_paid.value_usd | 2598 |
| language | en |
| locations[0].id | doi:10.3390/s25216694 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S101949793 |
| locations[0].source.issn | 1424-8220 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 1424-8220 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | Sensors |
| locations[0].source.host_organization | https://openalex.org/P4310310987 |
| locations[0].source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310310987 |
| locations[0].source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://www.mdpi.com/1424-8220/25/21/6694/pdf?version=1762075432 |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Sensors |
| locations[0].landing_page_url | https://doi.org/10.3390/s25216694 |
| locations[1].id | pmid:41228917 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306525036 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | PubMed |
| locations[1].source.host_organization | https://openalex.org/I1299303238 |
| locations[1].source.host_organization_name | National Institutes of Health |
| locations[1].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | publishedVersion |
| locations[1].raw_type | |
| locations[1].license_id | |
| locations[1].is_accepted | True |
| locations[1].is_published | True |
| locations[1].raw_source_name | Sensors (Basel, Switzerland) |
| locations[1].landing_page_url | https://pubmed.ncbi.nlm.nih.gov/41228917 |
| locations[2].id | pmh:oai:doaj.org/article:07d843503b88426a82531e6aefd8e64d |
| locations[2].is_oa | False |
| locations[2].source.id | https://openalex.org/S4306401280 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | False |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[2].source.host_organization | |
| locations[2].source.host_organization_name | |
| locations[2].license | |
| locations[2].pdf_url | |
| locations[2].version | submittedVersion |
| locations[2].raw_type | article |
| locations[2].license_id | |
| locations[2].is_accepted | False |
| locations[2].is_published | False |
| locations[2].raw_source_name | Sensors, Vol 25, Iss 21, p 6694 (2025) |
| locations[2].landing_page_url | https://doaj.org/article/07d843503b88426a82531e6aefd8e64d |
| locations[3].id | pmh:oai:europepmc.org:11414771 |
| locations[3].is_oa | True |
| locations[3].source.id | https://openalex.org/S4306400806 |
| locations[3].source.issn | |
| locations[3].source.type | repository |
| locations[3].source.is_oa | False |
| locations[3].source.issn_l | |
| locations[3].source.is_core | False |
| locations[3].source.is_in_doaj | False |
| locations[3].source.display_name | Europe PMC (PubMed Central) |
| locations[3].source.host_organization | https://openalex.org/I1303153112 |
| locations[3].source.host_organization_name | European Bioinformatics Institute |
| locations[3].source.host_organization_lineage | https://openalex.org/I1303153112 |
| locations[3].license | other-oa |
| locations[3].pdf_url | |
| locations[3].version | submittedVersion |
| locations[3].raw_type | Text |
| locations[3].license_id | https://openalex.org/licenses/other-oa |
| locations[3].is_accepted | False |
| locations[3].is_published | False |
| locations[3].raw_source_name | |
| locations[3].landing_page_url | https://www.ncbi.nlm.nih.gov/pmc/articles/12609959 |
| indexed_in | crossref, doaj, pubmed |
| authorships[0].author.id | https://openalex.org/A5100297718 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Zengbo Xu |
| authorships[0].countries | CN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I141962983 |
| authorships[0].affiliations[0].raw_affiliation_string | School of Textile and Apparel, Shanghai University of Engineering and Technology, No. 333 Longteng Road, Songjiang District, Shanghai 201600, China |
| authorships[0].institutions[0].id | https://openalex.org/I141962983 |
| authorships[0].institutions[0].ror | https://ror.org/0557b9y08 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I141962983 |
| authorships[0].institutions[0].country_code | CN |
| authorships[0].institutions[0].display_name | Shanghai University of Engineering Science |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Zengbo Xu |
| authorships[0].is_corresponding | True |
| authorships[0].raw_affiliation_strings | School of Textile and Apparel, Shanghai University of Engineering and Technology, No. 333 Longteng Road, Songjiang District, Shanghai 201600, China |
| authorships[1].author.id | https://openalex.org/A5064015289 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-0080-5365 |
| authorships[1].author.display_name | Yiheng Wei |
| authorships[1].countries | CN |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I141962983 |
| authorships[1].affiliations[0].raw_affiliation_string | School of Textile and Apparel, Shanghai University of Engineering and Technology, No. 333 Longteng Road, Songjiang District, Shanghai 201600, China |
| authorships[1].institutions[0].id | https://openalex.org/I141962983 |
| authorships[1].institutions[0].ror | https://ror.org/0557b9y08 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I141962983 |
| authorships[1].institutions[0].country_code | CN |
| authorships[1].institutions[0].display_name | Shanghai University of Engineering Science |
| authorships[1].author_position | last |
| authorships[1].raw_author_name | Yiheng Wei |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | School of Textile and Apparel, Shanghai University of Engineering and Technology, No. 333 Longteng Road, Songjiang District, Shanghai 201600, China |
| has_content.pdf | True |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://www.mdpi.com/1424-8220/25/21/6694/pdf?version=1762075432 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-11-03T00:00:00 |
| display_name | Super-Resolution Reconstruction of Sonograms Using Residual Dense Conditional Generative Adversarial Network |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic | |
| cited_by_count | 0 |
| locations_count | 4 |
| best_oa_location.id | doi:10.3390/s25216694 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S101949793 |
| best_oa_location.source.issn | 1424-8220 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 1424-8220 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | Sensors |
| best_oa_location.source.host_organization | https://openalex.org/P4310310987 |
| best_oa_location.source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| best_oa_location.source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://www.mdpi.com/1424-8220/25/21/6694/pdf?version=1762075432 |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Sensors |
| best_oa_location.landing_page_url | https://doi.org/10.3390/s25216694 |
| primary_location.id | doi:10.3390/s25216694 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S101949793 |
| primary_location.source.issn | 1424-8220 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 1424-8220 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | Sensors |
| primary_location.source.host_organization | https://openalex.org/P4310310987 |
| primary_location.source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| primary_location.source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://www.mdpi.com/1424-8220/25/21/6694/pdf?version=1762075432 |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Sensors |
| primary_location.landing_page_url | https://doi.org/10.3390/s25216694 |
| publication_date | 2025-11-02 |
| publication_year | 2025 |
| referenced_works | https://openalex.org/W4407353145, https://openalex.org/W4383495986, https://openalex.org/W4378192125, https://openalex.org/W4392550055, https://openalex.org/W2470128886, https://openalex.org/W2184334976, https://openalex.org/W2121058967, https://openalex.org/W54257720, https://openalex.org/W3207918547, https://openalex.org/W4403942500, https://openalex.org/W4402916130, https://openalex.org/W4402916771, https://openalex.org/W2503339013, https://openalex.org/W2963470893, https://openalex.org/W2343734370, https://openalex.org/W2747898905, https://openalex.org/W2794800073, https://openalex.org/W2807184855, https://openalex.org/W2915978614, https://openalex.org/W2897617587, https://openalex.org/W3019894155, https://openalex.org/W2989607782, https://openalex.org/W2963372104, https://openalex.org/W2964101377, https://openalex.org/W935139217, https://openalex.org/W2765811365, https://openalex.org/W2830764089, https://openalex.org/W3127151744 |
| referenced_works_count | 28 |
| abstract_inverted_index.A | 0, 78 |
| abstract_inverted_index.a | 42, 95, 150 |
| abstract_inverted_index.It | 21 |
| abstract_inverted_index.On | 110, 141 |
| abstract_inverted_index.be | 198 |
| abstract_inverted_index.in | 18, 72, 202, 232 |
| abstract_inverted_index.is | 16, 22, 32, 64, 98, 104, 223 |
| abstract_inverted_index.it | 63 |
| abstract_inverted_index.of | 5, 28, 74, 106, 128, 157, 170, 190, 213, 221 |
| abstract_inverted_index.on | 8, 41, 93, 195 |
| abstract_inverted_index.to | 48, 67, 153, 217, 234 |
| abstract_inverted_index.The | 161 |
| abstract_inverted_index.and | 34, 56, 89, 132, 181, 206, 225 |
| abstract_inverted_index.are | 46, 117, 130, 134, 147 |
| abstract_inverted_index.for | 2 |
| abstract_inverted_index.new | 96 |
| abstract_inverted_index.one | 112 |
| abstract_inverted_index.the | 26, 35, 59, 84, 101, 111, 120, 125, 137, 142, 155, 187, 211, 219, 226, 230, 235 |
| abstract_inverted_index.(LR) | 115 |
| abstract_inverted_index.GAN, | 94 |
| abstract_inverted_index.both | 201 |
| abstract_inverted_index.four | 166 |
| abstract_inverted_index.into | 119, 136, 149 |
| abstract_inverted_index.much | 53 |
| abstract_inverted_index.show | 185 |
| abstract_inverted_index.that | 25, 186 |
| abstract_inverted_index.then | 57, 124, 133 |
| abstract_inverted_index.this | 19 |
| abstract_inverted_index.very | 65 |
| abstract_inverted_index.well | 23 |
| abstract_inverted_index.with | 175 |
| abstract_inverted_index.Based | 92 |
| abstract_inverted_index.Dense | 10 |
| abstract_inverted_index.based | 7, 40, 194 |
| abstract_inverted_index.could | 82, 164, 197 |
| abstract_inverted_index.dense | 107, 121 |
| abstract_inverted_index.fewer | 54 |
| abstract_inverted_index.fused | 135 |
| abstract_inverted_index.guide | 154 |
| abstract_inverted_index.hand, | 113, 144 |
| abstract_inverted_index.image | 37, 159 |
| abstract_inverted_index.input | 118 |
| abstract_inverted_index.known | 24 |
| abstract_inverted_index.learn | 83 |
| abstract_inverted_index.other | 143 |
| abstract_inverted_index.prone | 47 |
| abstract_inverted_index.prove | 229 |
| abstract_inverted_index.rates | 228 |
| abstract_inverted_index.stage | 218 |
| abstract_inverted_index.terms | 73 |
| abstract_inverted_index.times | 167 |
| abstract_inverted_index.where | 100 |
| abstract_inverted_index.SRCNN, | 182 |
| abstract_inverted_index.SRGAN, | 180 |
| abstract_inverted_index.effect | 189 |
| abstract_inverted_index.global | 138 |
| abstract_inverted_index.images | 31, 71, 116, 129, 193, 216 |
| abstract_inverted_index.losing | 49 |
| abstract_inverted_index.method | 1, 163 |
| abstract_inverted_index.neural | 44 |
| abstract_inverted_index.paper. | 20 |
| abstract_inverted_index.visual | 208 |
| abstract_inverted_index.Network | 14, 81 |
| abstract_inverted_index.RDC-GAN | 196 |
| abstract_inverted_index.between | 87 |
| abstract_inverted_index.images. | 61, 91, 173, 237 |
| abstract_inverted_index.mapping | 85 |
| abstract_inverted_index.medical | 29, 70, 171, 191 |
| abstract_inverted_index.network | 45, 97, 103, 152 |
| abstract_inverted_index.process | 156 |
| abstract_inverted_index.realize | 165 |
| abstract_inverted_index.results | 184 |
| abstract_inverted_index.texture | 50 |
| abstract_inverted_index.Bicubic, | 179 |
| abstract_inverted_index.Compared | 174 |
| abstract_inverted_index.Residual | 9 |
| abstract_inverted_index.accuracy | 227 |
| abstract_inverted_index.blurring | 58 |
| abstract_inverted_index.composed | 105 |
| abstract_inverted_index.contrast | 233 |
| abstract_inverted_index.details, | 51 |
| abstract_inverted_index.details. | 77 |
| abstract_inverted_index.features | 127 |
| abstract_inverted_index.learned, | 131 |
| abstract_inverted_index.limited, | 33 |
| abstract_inverted_index.modules. | 109 |
| abstract_inverted_index.network, | 123 |
| abstract_inverted_index.original | 236 |
| abstract_inverted_index.proposed | 17, 162 |
| abstract_inverted_index.residual | 108, 122, 139 |
| abstract_inverted_index.textured | 76 |
| abstract_inverted_index.(RDC-GAN) | 15 |
| abstract_inverted_index.Moreover, | 210 |
| abstract_inverted_index.cirrhosis | 222 |
| abstract_inverted_index.classical | 176 |
| abstract_inverted_index.designed, | 99 |
| abstract_inverted_index.diagnosis | 220 |
| abstract_inverted_index.discussed | 224 |
| abstract_inverted_index.features, | 55 |
| abstract_inverted_index.features. | 140 |
| abstract_inverted_index.important | 66 |
| abstract_inverted_index.improved, | 200 |
| abstract_inverted_index.including | 178 |
| abstract_inverted_index.numerical | 204 |
| abstract_inverted_index.objective | 203 |
| abstract_inverted_index.retaining | 75 |
| abstract_inverted_index.sonograms | 6 |
| abstract_inverted_index.variables | 146 |
| abstract_inverted_index.Generative | 12, 79 |
| abstract_inverted_index.Therefore, | 62 |
| abstract_inverted_index.algorithms | 39, 177 |
| abstract_inverted_index.evaluation | 205 |
| abstract_inverted_index.extracting | 52 |
| abstract_inverted_index.generation | 102 |
| abstract_inverted_index.introduced | 148 |
| abstract_inverted_index.resolution | 27 |
| abstract_inverted_index.subjective | 207 |
| abstract_inverted_index.ultrasound | 30, 172, 192 |
| abstract_inverted_index.Adversarial | 13, 80 |
| abstract_inverted_index.Conditional | 11 |
| abstract_inverted_index.application | 212 |
| abstract_inverted_index.assessment. | 209 |
| abstract_inverted_index.conditional | 145 |
| abstract_inverted_index.effectively | 199 |
| abstract_inverted_index.multi-level | 126 |
| abstract_inverted_index.reconstruct | 68 |
| abstract_inverted_index.experimental | 183 |
| abstract_inverted_index.practicality | 231 |
| abstract_inverted_index.relationship | 86 |
| abstract_inverted_index.single-frame | 36 |
| abstract_inverted_index.convolutional | 43 |
| abstract_inverted_index.discriminator | 151 |
| abstract_inverted_index.magnification | 168 |
| abstract_inverted_index.reconstructed | 60, 215 |
| abstract_inverted_index.low-resolution | 88, 114 |
| abstract_inverted_index.reconstruction | 4, 169 |
| abstract_inverted_index.high-resolution | 69, 90 |
| abstract_inverted_index.reconstruction. | 160 |
| abstract_inverted_index.super-resolution | 3, 38, 158, 188, 214 |
| cited_by_percentile_year | |
| corresponding_author_ids | https://openalex.org/A5100297718 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 2 |
| corresponding_institution_ids | https://openalex.org/I141962983 |
| citation_normalized_percentile |