Superresolution Alignment with Innocence Assumption: Towards a Fair Quality Measurement for Blind Deconvolution Article Swipe
National audience Quantitative measurements of restoration quality in blind deconvolution are complicated by the necessity to compensate for opposite shifts of reconstructed image and point-spread function. Alignment procedures mentioned for this purpose in the literature are sometimes not exactly enough specified; alignment-free approaches sometimes do not take into account the full variability of possible shifts. We investigate by experiments on a simple test case the errors induced by interpolation-based alignment procedures. We propose a new method for MSE/PSNR measurement of image pairs involving non-integer displacements that is based on a superresolution approach. We introduce an innocence assumption in order to keep deviations that can be explained by shifted sampling grids out of the error measurement. In our test case, the new measurement procedure reduces the variations in MSE/PSNR measurements substantially, creating the hope that it can be used for valid comparisons of blind deconvolution methods.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- http://hal.archives-ouvertes.fr/hal-01592311
- OA Status
- green
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4390787078
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4390787078Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.3217/978-3-85125-524-9-29Digital Object Identifier
- Title
-
Superresolution Alignment with Innocence Assumption: Towards a Fair Quality Measurement for Blind DeconvolutionWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2020Year of publication
- Publication date
-
2020-04-07Full publication date if available
- Authors
-
Martin WelkList of authors in order
- Landing page
-
https://hal.archives-ouvertes.fr/hal-01592311Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://hal.science/hal-01592311Direct OA link when available
- Concepts
-
Deconvolution, Innocence, Blind deconvolution, Computer science, Superresolution, Quality (philosophy), Artificial intelligence, Computer vision, Algorithm, Image (mathematics), Epistemology, Law, Philosophy, Political scienceTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4390787078 |
|---|---|
| doi | https://doi.org/10.3217/978-3-85125-524-9-29 |
| ids.doi | https://doi.org/10.3217/978-3-85125-524-9-29 |
| ids.openalex | https://openalex.org/W4390787078 |
| fwci | 0.0 |
| type | article |
| title | Superresolution Alignment with Innocence Assumption: Towards a Fair Quality Measurement for Blind Deconvolution |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T11105 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.932699978351593 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1707 |
| topics[0].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[0].display_name | Advanced Image Processing Techniques |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C174576160 |
| concepts[0].level | 2 |
| concepts[0].score | 0.7774316072463989 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q1183700 |
| concepts[0].display_name | Deconvolution |
| concepts[1].id | https://openalex.org/C2777359062 |
| concepts[1].level | 2 |
| concepts[1].score | 0.7033829092979431 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q359385 |
| concepts[1].display_name | Innocence |
| concepts[2].id | https://openalex.org/C30044814 |
| concepts[2].level | 3 |
| concepts[2].score | 0.6953828930854797 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q11334452 |
| concepts[2].display_name | Blind deconvolution |
| concepts[3].id | https://openalex.org/C41008148 |
| concepts[3].level | 0 |
| concepts[3].score | 0.6143571734428406 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[3].display_name | Computer science |
| concepts[4].id | https://openalex.org/C141239990 |
| concepts[4].level | 3 |
| concepts[4].score | 0.5923780798912048 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q957423 |
| concepts[4].display_name | Superresolution |
| concepts[5].id | https://openalex.org/C2779530757 |
| concepts[5].level | 2 |
| concepts[5].score | 0.501060962677002 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q1207505 |
| concepts[5].display_name | Quality (philosophy) |
| concepts[6].id | https://openalex.org/C154945302 |
| concepts[6].level | 1 |
| concepts[6].score | 0.4758424758911133 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[6].display_name | Artificial intelligence |
| concepts[7].id | https://openalex.org/C31972630 |
| concepts[7].level | 1 |
| concepts[7].score | 0.42793360352516174 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q844240 |
| concepts[7].display_name | Computer vision |
| concepts[8].id | https://openalex.org/C11413529 |
| concepts[8].level | 1 |
| concepts[8].score | 0.2958448529243469 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q8366 |
| concepts[8].display_name | Algorithm |
| concepts[9].id | https://openalex.org/C115961682 |
| concepts[9].level | 2 |
| concepts[9].score | 0.18230408430099487 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q860623 |
| concepts[9].display_name | Image (mathematics) |
| concepts[10].id | https://openalex.org/C111472728 |
| concepts[10].level | 1 |
| concepts[10].score | 0.10771864652633667 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q9471 |
| concepts[10].display_name | Epistemology |
| concepts[11].id | https://openalex.org/C199539241 |
| concepts[11].level | 1 |
| concepts[11].score | 0.099602609872818 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q7748 |
| concepts[11].display_name | Law |
| concepts[12].id | https://openalex.org/C138885662 |
| concepts[12].level | 0 |
| concepts[12].score | 0.0846794843673706 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q5891 |
| concepts[12].display_name | Philosophy |
| concepts[13].id | https://openalex.org/C17744445 |
| concepts[13].level | 0 |
| concepts[13].score | 0.07425752282142639 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q36442 |
| concepts[13].display_name | Political science |
| keywords[0].id | https://openalex.org/keywords/deconvolution |
| keywords[0].score | 0.7774316072463989 |
| keywords[0].display_name | Deconvolution |
| keywords[1].id | https://openalex.org/keywords/innocence |
| keywords[1].score | 0.7033829092979431 |
| keywords[1].display_name | Innocence |
| keywords[2].id | https://openalex.org/keywords/blind-deconvolution |
| keywords[2].score | 0.6953828930854797 |
| keywords[2].display_name | Blind deconvolution |
| keywords[3].id | https://openalex.org/keywords/computer-science |
| keywords[3].score | 0.6143571734428406 |
| keywords[3].display_name | Computer science |
| keywords[4].id | https://openalex.org/keywords/superresolution |
| keywords[4].score | 0.5923780798912048 |
| keywords[4].display_name | Superresolution |
| keywords[5].id | https://openalex.org/keywords/quality |
| keywords[5].score | 0.501060962677002 |
| keywords[5].display_name | Quality (philosophy) |
| keywords[6].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[6].score | 0.4758424758911133 |
| keywords[6].display_name | Artificial intelligence |
| keywords[7].id | https://openalex.org/keywords/computer-vision |
| keywords[7].score | 0.42793360352516174 |
| keywords[7].display_name | Computer vision |
| keywords[8].id | https://openalex.org/keywords/algorithm |
| keywords[8].score | 0.2958448529243469 |
| keywords[8].display_name | Algorithm |
| keywords[9].id | https://openalex.org/keywords/image |
| keywords[9].score | 0.18230408430099487 |
| keywords[9].display_name | Image (mathematics) |
| keywords[10].id | https://openalex.org/keywords/epistemology |
| keywords[10].score | 0.10771864652633667 |
| keywords[10].display_name | Epistemology |
| keywords[11].id | https://openalex.org/keywords/law |
| keywords[11].score | 0.099602609872818 |
| keywords[11].display_name | Law |
| keywords[12].id | https://openalex.org/keywords/philosophy |
| keywords[12].score | 0.0846794843673706 |
| keywords[12].display_name | Philosophy |
| keywords[13].id | https://openalex.org/keywords/political-science |
| keywords[13].score | 0.07425752282142639 |
| keywords[13].display_name | Political science |
| language | en |
| locations[0].id | pmh:oai:share.osf.io:4616F-C6C-F5E |
| locations[0].is_oa | False |
| locations[0].source.id | https://openalex.org/S4306400047 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | False |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | Arabixiv (OSF Preprints) |
| locations[0].source.host_organization | https://openalex.org/I2799848540 |
| locations[0].source.host_organization_name | Center for Open Science |
| locations[0].source.host_organization_lineage | https://openalex.org/I2799848540 |
| locations[0].license | |
| locations[0].pdf_url | |
| locations[0].version | submittedVersion |
| locations[0].raw_type | conferencepaper |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://hal.archives-ouvertes.fr/hal-01592311 |
| locations[1].id | pmh:oai:HAL:hal-01592311v1 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306402512 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | HAL (Le Centre pour la Communication Scientifique Directe) |
| locations[1].source.host_organization | https://openalex.org/I1294671590 |
| locations[1].source.host_organization_name | Centre National de la Recherche Scientifique |
| locations[1].source.host_organization_lineage | https://openalex.org/I1294671590 |
| locations[1].license | other-oa |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | info:eu-repo/semantics/conferenceObject |
| locations[1].license_id | https://openalex.org/licenses/other-oa |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | OAGM&ARW Joint Workshop 2017: Vision, Automation and Robotics. May 10-12, 2017, Vienna |
| locations[1].landing_page_url | https://hal.science/hal-01592311 |
| locations[2].id | doi:10.3217/978-3-85125-524-9-29 |
| locations[2].is_oa | True |
| locations[2].source.id | https://openalex.org/S4306400660 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | False |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | TUGraz OPEN Library (Graz University of Technology) |
| locations[2].source.host_organization | https://openalex.org/I4092182 |
| locations[2].source.host_organization_name | Graz University of Technology |
| locations[2].source.host_organization_lineage | https://openalex.org/I4092182 |
| locations[2].license | |
| locations[2].pdf_url | |
| locations[2].version | |
| locations[2].raw_type | article |
| locations[2].license_id | |
| locations[2].is_accepted | False |
| locations[2].is_published | |
| locations[2].raw_source_name | |
| locations[2].landing_page_url | https://doi.org/10.3217/978-3-85125-524-9-29 |
| indexed_in | datacite |
| authorships[0].author.id | https://openalex.org/A5055314620 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-6268-7050 |
| authorships[0].author.display_name | Martin Welk |
| authorships[0].countries | MK |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I4210095297 |
| authorships[0].affiliations[0].raw_affiliation_string | UMIT - University for Health Sciences, Medical Informatics and Technology |
| authorships[0].institutions[0].id | https://openalex.org/I4210095297 |
| authorships[0].institutions[0].ror | https://ror.org/00v140q16 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I4210095297 |
| authorships[0].institutions[0].country_code | MK |
| authorships[0].institutions[0].display_name | MIT University |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Martin Welk |
| authorships[0].is_corresponding | True |
| authorships[0].raw_affiliation_strings | UMIT - University for Health Sciences, Medical Informatics and Technology |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://hal.science/hal-01592311 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Superresolution Alignment with Innocence Assumption: Towards a Fair Quality Measurement for Blind Deconvolution |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T11105 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.932699978351593 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1707 |
| primary_topic.subfield.display_name | Computer Vision and Pattern Recognition |
| primary_topic.display_name | Advanced Image Processing Techniques |
| related_works | https://openalex.org/W2034520358, https://openalex.org/W2059639161, https://openalex.org/W2058895457, https://openalex.org/W1538056422, https://openalex.org/W2586325539, https://openalex.org/W2023738877, https://openalex.org/W2147401053, https://openalex.org/W2029084792, https://openalex.org/W2589098082, https://openalex.org/W2500472126 |
| cited_by_count | 0 |
| locations_count | 3 |
| best_oa_location.id | pmh:oai:HAL:hal-01592311v1 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306402512 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | False |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | HAL (Le Centre pour la Communication Scientifique Directe) |
| best_oa_location.source.host_organization | https://openalex.org/I1294671590 |
| best_oa_location.source.host_organization_name | Centre National de la Recherche Scientifique |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I1294671590 |
| best_oa_location.license | other-oa |
| best_oa_location.pdf_url | |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | info:eu-repo/semantics/conferenceObject |
| best_oa_location.license_id | https://openalex.org/licenses/other-oa |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | OAGM&ARW Joint Workshop 2017: Vision, Automation and Robotics. May 10-12, 2017, Vienna |
| best_oa_location.landing_page_url | https://hal.science/hal-01592311 |
| primary_location.id | pmh:oai:share.osf.io:4616F-C6C-F5E |
| primary_location.is_oa | False |
| primary_location.source.id | https://openalex.org/S4306400047 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | False |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | Arabixiv (OSF Preprints) |
| primary_location.source.host_organization | https://openalex.org/I2799848540 |
| primary_location.source.host_organization_name | Center for Open Science |
| primary_location.source.host_organization_lineage | https://openalex.org/I2799848540 |
| primary_location.license | |
| primary_location.pdf_url | |
| primary_location.version | submittedVersion |
| primary_location.raw_type | conferencepaper |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://hal.archives-ouvertes.fr/hal-01592311 |
| publication_date | 2020-04-07 |
| publication_year | 2020 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 60, 73, 89 |
| abstract_inverted_index.In | 115 |
| abstract_inverted_index.We | 55, 71, 92 |
| abstract_inverted_index.an | 94 |
| abstract_inverted_index.be | 104, 136 |
| abstract_inverted_index.by | 12, 57, 67, 106 |
| abstract_inverted_index.do | 44 |
| abstract_inverted_index.in | 7, 32, 97, 126 |
| abstract_inverted_index.is | 86 |
| abstract_inverted_index.it | 134 |
| abstract_inverted_index.of | 4, 20, 52, 79, 111, 141 |
| abstract_inverted_index.on | 59, 88 |
| abstract_inverted_index.to | 15, 99 |
| abstract_inverted_index.and | 23 |
| abstract_inverted_index.are | 10, 35 |
| abstract_inverted_index.can | 103, 135 |
| abstract_inverted_index.for | 17, 29, 76, 138 |
| abstract_inverted_index.new | 74, 120 |
| abstract_inverted_index.not | 37, 45 |
| abstract_inverted_index.our | 116 |
| abstract_inverted_index.out | 110 |
| abstract_inverted_index.the | 13, 33, 49, 64, 112, 119, 124, 131 |
| abstract_inverted_index.case | 63 |
| abstract_inverted_index.full | 50 |
| abstract_inverted_index.hope | 132 |
| abstract_inverted_index.into | 47 |
| abstract_inverted_index.keep | 100 |
| abstract_inverted_index.take | 46 |
| abstract_inverted_index.test | 62, 117 |
| abstract_inverted_index.that | 85, 102, 133 |
| abstract_inverted_index.this | 30 |
| abstract_inverted_index.used | 137 |
| abstract_inverted_index.based | 87 |
| abstract_inverted_index.blind | 8, 142 |
| abstract_inverted_index.case, | 118 |
| abstract_inverted_index.error | 113 |
| abstract_inverted_index.grids | 109 |
| abstract_inverted_index.image | 22, 80 |
| abstract_inverted_index.order | 98 |
| abstract_inverted_index.pairs | 81 |
| abstract_inverted_index.valid | 139 |
| abstract_inverted_index.enough | 39 |
| abstract_inverted_index.errors | 65 |
| abstract_inverted_index.method | 75 |
| abstract_inverted_index.shifts | 19 |
| abstract_inverted_index.simple | 61 |
| abstract_inverted_index.account | 48 |
| abstract_inverted_index.exactly | 38 |
| abstract_inverted_index.induced | 66 |
| abstract_inverted_index.propose | 72 |
| abstract_inverted_index.purpose | 31 |
| abstract_inverted_index.quality | 6 |
| abstract_inverted_index.reduces | 123 |
| abstract_inverted_index.shifted | 107 |
| abstract_inverted_index.shifts. | 54 |
| abstract_inverted_index.MSE/PSNR | 77, 127 |
| abstract_inverted_index.National | 0 |
| abstract_inverted_index.audience | 1 |
| abstract_inverted_index.creating | 130 |
| abstract_inverted_index.methods. | 144 |
| abstract_inverted_index.opposite | 18 |
| abstract_inverted_index.possible | 53 |
| abstract_inverted_index.sampling | 108 |
| abstract_inverted_index.Alignment | 26 |
| abstract_inverted_index.alignment | 69 |
| abstract_inverted_index.approach. | 91 |
| abstract_inverted_index.explained | 105 |
| abstract_inverted_index.function. | 25 |
| abstract_inverted_index.innocence | 95 |
| abstract_inverted_index.introduce | 93 |
| abstract_inverted_index.involving | 82 |
| abstract_inverted_index.mentioned | 28 |
| abstract_inverted_index.necessity | 14 |
| abstract_inverted_index.procedure | 122 |
| abstract_inverted_index.sometimes | 36, 43 |
| abstract_inverted_index.approaches | 42 |
| abstract_inverted_index.assumption | 96 |
| abstract_inverted_index.compensate | 16 |
| abstract_inverted_index.deviations | 101 |
| abstract_inverted_index.literature | 34 |
| abstract_inverted_index.procedures | 27 |
| abstract_inverted_index.specified; | 40 |
| abstract_inverted_index.variations | 125 |
| abstract_inverted_index.comparisons | 140 |
| abstract_inverted_index.complicated | 11 |
| abstract_inverted_index.experiments | 58 |
| abstract_inverted_index.investigate | 56 |
| abstract_inverted_index.measurement | 78, 121 |
| abstract_inverted_index.non-integer | 83 |
| abstract_inverted_index.procedures. | 70 |
| abstract_inverted_index.restoration | 5 |
| abstract_inverted_index.variability | 51 |
| abstract_inverted_index.Quantitative | 2 |
| abstract_inverted_index.measurement. | 114 |
| abstract_inverted_index.measurements | 3, 128 |
| abstract_inverted_index.point-spread | 24 |
| abstract_inverted_index.deconvolution | 9, 143 |
| abstract_inverted_index.displacements | 84 |
| abstract_inverted_index.reconstructed | 21 |
| abstract_inverted_index.alignment-free | 41 |
| abstract_inverted_index.substantially, | 129 |
| abstract_inverted_index.superresolution | 90 |
| abstract_inverted_index.interpolation-based | 68 |
| cited_by_percentile_year | |
| corresponding_author_ids | https://openalex.org/A5055314620 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 1 |
| corresponding_institution_ids | https://openalex.org/I4210095297 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/16 |
| sustainable_development_goals[0].score | 0.5400000214576721 |
| sustainable_development_goals[0].display_name | Peace, Justice and strong institutions |
| citation_normalized_percentile.value | 0.25817051 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |