Supervised Contrastive CSI Representation Learning for Massive MIMO Positioning Article Swipe
YOU?
·
· 2022
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2204.12796
Similarity metric is crucial for massive MIMO positioning utilizing channel state information~(CSI). In this letter, we propose a novel massive MIMO CSI similarity learning method via deep convolutional neural network~(DCNN) and contrastive learning. A contrastive loss function is designed considering multiple positive and negative CSI samples drawn from a training dataset. The DCNN encoder is trained using the loss so that positive samples are mapped to points close to the anchor's encoding, while encodings of negative samples are kept away from the anchor's in the representation space. Evaluation results of fingerprint-based positioning on a real-world CSI dataset show that the learned similarity metric improves positioning accuracy significantly compared with other known state-of-the-art methods.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2204.12796
- https://arxiv.org/pdf/2204.12796
- OA Status
- green
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4309417027
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4309417027Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2204.12796Digital Object Identifier
- Title
-
Supervised Contrastive CSI Representation Learning for Massive MIMO PositioningWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2022Year of publication
- Publication date
-
2022-04-27Full publication date if available
- Authors
-
Junquan Deng, Wei Shi, Jianzhao Zhang, Xianyu Zhang, Chuan ZhangList of authors in order
- Landing page
-
https://arxiv.org/abs/2204.12796Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2204.12796Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2204.12796Direct OA link when available
- Concepts
-
Similarity (geometry), Encoder, Representation (politics), Artificial intelligence, Computer science, Metric (unit), Convolutional neural network, Channel state information, Encoding (memory), MIMO, Deep learning, Autoencoder, Pattern recognition (psychology), Feature learning, Channel (broadcasting), Image (mathematics), Telecommunications, Engineering, Operating system, Political science, Politics, Wireless, Operations management, LawTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4309417027 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2204.12796 |
| ids.doi | https://doi.org/10.48550/arxiv.2204.12796 |
| ids.openalex | https://openalex.org/W4309417027 |
| fwci | |
| type | preprint |
| title | Supervised Contrastive CSI Representation Learning for Massive MIMO Positioning |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10326 |
| topics[0].field.id | https://openalex.org/fields/22 |
| topics[0].field.display_name | Engineering |
| topics[0].score | 0.9994999766349792 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2208 |
| topics[0].subfield.display_name | Electrical and Electronic Engineering |
| topics[0].display_name | Indoor and Outdoor Localization Technologies |
| topics[1].id | https://openalex.org/T10860 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9962000250816345 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1711 |
| topics[1].subfield.display_name | Signal Processing |
| topics[1].display_name | Speech and Audio Processing |
| topics[2].id | https://openalex.org/T11946 |
| topics[2].field.id | https://openalex.org/fields/22 |
| topics[2].field.display_name | Engineering |
| topics[2].score | 0.9922999739646912 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2202 |
| topics[2].subfield.display_name | Aerospace Engineering |
| topics[2].display_name | Antenna Design and Optimization |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C103278499 |
| concepts[0].level | 3 |
| concepts[0].score | 0.6833254098892212 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q254465 |
| concepts[0].display_name | Similarity (geometry) |
| concepts[1].id | https://openalex.org/C118505674 |
| concepts[1].level | 2 |
| concepts[1].score | 0.6821020245552063 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q42586063 |
| concepts[1].display_name | Encoder |
| concepts[2].id | https://openalex.org/C2776359362 |
| concepts[2].level | 3 |
| concepts[2].score | 0.6785980463027954 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q2145286 |
| concepts[2].display_name | Representation (politics) |
| concepts[3].id | https://openalex.org/C154945302 |
| concepts[3].level | 1 |
| concepts[3].score | 0.6627165079116821 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[3].display_name | Artificial intelligence |
| concepts[4].id | https://openalex.org/C41008148 |
| concepts[4].level | 0 |
| concepts[4].score | 0.6610896587371826 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[4].display_name | Computer science |
| concepts[5].id | https://openalex.org/C176217482 |
| concepts[5].level | 2 |
| concepts[5].score | 0.653287410736084 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q860554 |
| concepts[5].display_name | Metric (unit) |
| concepts[6].id | https://openalex.org/C81363708 |
| concepts[6].level | 2 |
| concepts[6].score | 0.5621190071105957 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q17084460 |
| concepts[6].display_name | Convolutional neural network |
| concepts[7].id | https://openalex.org/C148063708 |
| concepts[7].level | 3 |
| concepts[7].score | 0.5620436072349548 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q5072511 |
| concepts[7].display_name | Channel state information |
| concepts[8].id | https://openalex.org/C125411270 |
| concepts[8].level | 2 |
| concepts[8].score | 0.5250656008720398 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q18653 |
| concepts[8].display_name | Encoding (memory) |
| concepts[9].id | https://openalex.org/C207987634 |
| concepts[9].level | 3 |
| concepts[9].score | 0.5179147124290466 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q176862 |
| concepts[9].display_name | MIMO |
| concepts[10].id | https://openalex.org/C108583219 |
| concepts[10].level | 2 |
| concepts[10].score | 0.491884708404541 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q197536 |
| concepts[10].display_name | Deep learning |
| concepts[11].id | https://openalex.org/C101738243 |
| concepts[11].level | 3 |
| concepts[11].score | 0.462318480014801 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q786435 |
| concepts[11].display_name | Autoencoder |
| concepts[12].id | https://openalex.org/C153180895 |
| concepts[12].level | 2 |
| concepts[12].score | 0.46179699897766113 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[12].display_name | Pattern recognition (psychology) |
| concepts[13].id | https://openalex.org/C59404180 |
| concepts[13].level | 2 |
| concepts[13].score | 0.43537139892578125 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q17013334 |
| concepts[13].display_name | Feature learning |
| concepts[14].id | https://openalex.org/C127162648 |
| concepts[14].level | 2 |
| concepts[14].score | 0.33072659373283386 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q16858953 |
| concepts[14].display_name | Channel (broadcasting) |
| concepts[15].id | https://openalex.org/C115961682 |
| concepts[15].level | 2 |
| concepts[15].score | 0.19787141680717468 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q860623 |
| concepts[15].display_name | Image (mathematics) |
| concepts[16].id | https://openalex.org/C76155785 |
| concepts[16].level | 1 |
| concepts[16].score | 0.1007186770439148 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q418 |
| concepts[16].display_name | Telecommunications |
| concepts[17].id | https://openalex.org/C127413603 |
| concepts[17].level | 0 |
| concepts[17].score | 0.08133208751678467 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q11023 |
| concepts[17].display_name | Engineering |
| concepts[18].id | https://openalex.org/C111919701 |
| concepts[18].level | 1 |
| concepts[18].score | 0.0 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q9135 |
| concepts[18].display_name | Operating system |
| concepts[19].id | https://openalex.org/C17744445 |
| concepts[19].level | 0 |
| concepts[19].score | 0.0 |
| concepts[19].wikidata | https://www.wikidata.org/wiki/Q36442 |
| concepts[19].display_name | Political science |
| concepts[20].id | https://openalex.org/C94625758 |
| concepts[20].level | 2 |
| concepts[20].score | 0.0 |
| concepts[20].wikidata | https://www.wikidata.org/wiki/Q7163 |
| concepts[20].display_name | Politics |
| concepts[21].id | https://openalex.org/C555944384 |
| concepts[21].level | 2 |
| concepts[21].score | 0.0 |
| concepts[21].wikidata | https://www.wikidata.org/wiki/Q249 |
| concepts[21].display_name | Wireless |
| concepts[22].id | https://openalex.org/C21547014 |
| concepts[22].level | 1 |
| concepts[22].score | 0.0 |
| concepts[22].wikidata | https://www.wikidata.org/wiki/Q1423657 |
| concepts[22].display_name | Operations management |
| concepts[23].id | https://openalex.org/C199539241 |
| concepts[23].level | 1 |
| concepts[23].score | 0.0 |
| concepts[23].wikidata | https://www.wikidata.org/wiki/Q7748 |
| concepts[23].display_name | Law |
| keywords[0].id | https://openalex.org/keywords/similarity |
| keywords[0].score | 0.6833254098892212 |
| keywords[0].display_name | Similarity (geometry) |
| keywords[1].id | https://openalex.org/keywords/encoder |
| keywords[1].score | 0.6821020245552063 |
| keywords[1].display_name | Encoder |
| keywords[2].id | https://openalex.org/keywords/representation |
| keywords[2].score | 0.6785980463027954 |
| keywords[2].display_name | Representation (politics) |
| keywords[3].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[3].score | 0.6627165079116821 |
| keywords[3].display_name | Artificial intelligence |
| keywords[4].id | https://openalex.org/keywords/computer-science |
| keywords[4].score | 0.6610896587371826 |
| keywords[4].display_name | Computer science |
| keywords[5].id | https://openalex.org/keywords/metric |
| keywords[5].score | 0.653287410736084 |
| keywords[5].display_name | Metric (unit) |
| keywords[6].id | https://openalex.org/keywords/convolutional-neural-network |
| keywords[6].score | 0.5621190071105957 |
| keywords[6].display_name | Convolutional neural network |
| keywords[7].id | https://openalex.org/keywords/channel-state-information |
| keywords[7].score | 0.5620436072349548 |
| keywords[7].display_name | Channel state information |
| keywords[8].id | https://openalex.org/keywords/encoding |
| keywords[8].score | 0.5250656008720398 |
| keywords[8].display_name | Encoding (memory) |
| keywords[9].id | https://openalex.org/keywords/mimo |
| keywords[9].score | 0.5179147124290466 |
| keywords[9].display_name | MIMO |
| keywords[10].id | https://openalex.org/keywords/deep-learning |
| keywords[10].score | 0.491884708404541 |
| keywords[10].display_name | Deep learning |
| keywords[11].id | https://openalex.org/keywords/autoencoder |
| keywords[11].score | 0.462318480014801 |
| keywords[11].display_name | Autoencoder |
| keywords[12].id | https://openalex.org/keywords/pattern-recognition |
| keywords[12].score | 0.46179699897766113 |
| keywords[12].display_name | Pattern recognition (psychology) |
| keywords[13].id | https://openalex.org/keywords/feature-learning |
| keywords[13].score | 0.43537139892578125 |
| keywords[13].display_name | Feature learning |
| keywords[14].id | https://openalex.org/keywords/channel |
| keywords[14].score | 0.33072659373283386 |
| keywords[14].display_name | Channel (broadcasting) |
| keywords[15].id | https://openalex.org/keywords/image |
| keywords[15].score | 0.19787141680717468 |
| keywords[15].display_name | Image (mathematics) |
| keywords[16].id | https://openalex.org/keywords/telecommunications |
| keywords[16].score | 0.1007186770439148 |
| keywords[16].display_name | Telecommunications |
| keywords[17].id | https://openalex.org/keywords/engineering |
| keywords[17].score | 0.08133208751678467 |
| keywords[17].display_name | Engineering |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2204.12796 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | cc-by-nc-nd |
| locations[0].pdf_url | https://arxiv.org/pdf/2204.12796 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | https://openalex.org/licenses/cc-by-nc-nd |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2204.12796 |
| locations[1].id | doi:10.48550/arxiv.2204.12796 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2204.12796 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5091003868 |
| authorships[0].author.orcid | https://orcid.org/0000-0001-5880-4894 |
| authorships[0].author.display_name | Junquan Deng |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Deng, Junquan |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5100651614 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-3071-8350 |
| authorships[1].author.display_name | Wei Shi |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Shi, Wei |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5068860723 |
| authorships[2].author.orcid | https://orcid.org/0000-0003-0277-7166 |
| authorships[2].author.display_name | Jianzhao Zhang |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Zhang, Jianzhao |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5025861271 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-8079-8280 |
| authorships[3].author.display_name | Xianyu Zhang |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Zhang, Xianyu |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5100380082 |
| authorships[4].author.orcid | https://orcid.org/0000-0002-7736-6487 |
| authorships[4].author.display_name | Chuan Zhang |
| authorships[4].author_position | last |
| authorships[4].raw_author_name | Zhang, Chuan |
| authorships[4].is_corresponding | False |
| has_content.pdf | True |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2204.12796 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2022-11-27T00:00:00 |
| display_name | Supervised Contrastive CSI Representation Learning for Massive MIMO Positioning |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T10326 |
| primary_topic.field.id | https://openalex.org/fields/22 |
| primary_topic.field.display_name | Engineering |
| primary_topic.score | 0.9994999766349792 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2208 |
| primary_topic.subfield.display_name | Electrical and Electronic Engineering |
| primary_topic.display_name | Indoor and Outdoor Localization Technologies |
| related_works | https://openalex.org/W2983142544, https://openalex.org/W2891059443, https://openalex.org/W1950940422, https://openalex.org/W4283822356, https://openalex.org/W4281663961, https://openalex.org/W3208888551, https://openalex.org/W4313561566, https://openalex.org/W2129146436, https://openalex.org/W3208386644, https://openalex.org/W2032507829 |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2204.12796 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | cc-by-nc-nd |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2204.12796 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by-nc-nd |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2204.12796 |
| primary_location.id | pmh:oai:arXiv.org:2204.12796 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | cc-by-nc-nd |
| primary_location.pdf_url | https://arxiv.org/pdf/2204.12796 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | https://openalex.org/licenses/cc-by-nc-nd |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2204.12796 |
| publication_date | 2022-04-27 |
| publication_year | 2022 |
| referenced_works_count | 0 |
| abstract_inverted_index.A | 33 |
| abstract_inverted_index.a | 17, 48, 93 |
| abstract_inverted_index.In | 12 |
| abstract_inverted_index.in | 83 |
| abstract_inverted_index.is | 2, 37, 54 |
| abstract_inverted_index.of | 74, 89 |
| abstract_inverted_index.on | 92 |
| abstract_inverted_index.so | 59 |
| abstract_inverted_index.to | 65, 68 |
| abstract_inverted_index.we | 15 |
| abstract_inverted_index.CSI | 21, 44, 95 |
| abstract_inverted_index.The | 51 |
| abstract_inverted_index.and | 30, 42 |
| abstract_inverted_index.are | 63, 77 |
| abstract_inverted_index.for | 4 |
| abstract_inverted_index.the | 57, 69, 81, 84, 99 |
| abstract_inverted_index.via | 25 |
| abstract_inverted_index.DCNN | 52 |
| abstract_inverted_index.MIMO | 6, 20 |
| abstract_inverted_index.away | 79 |
| abstract_inverted_index.deep | 26 |
| abstract_inverted_index.from | 47, 80 |
| abstract_inverted_index.kept | 78 |
| abstract_inverted_index.loss | 35, 58 |
| abstract_inverted_index.show | 97 |
| abstract_inverted_index.that | 60, 98 |
| abstract_inverted_index.this | 13 |
| abstract_inverted_index.with | 108 |
| abstract_inverted_index.close | 67 |
| abstract_inverted_index.drawn | 46 |
| abstract_inverted_index.known | 110 |
| abstract_inverted_index.novel | 18 |
| abstract_inverted_index.other | 109 |
| abstract_inverted_index.state | 10 |
| abstract_inverted_index.using | 56 |
| abstract_inverted_index.while | 72 |
| abstract_inverted_index.mapped | 64 |
| abstract_inverted_index.method | 24 |
| abstract_inverted_index.metric | 1, 102 |
| abstract_inverted_index.neural | 28 |
| abstract_inverted_index.points | 66 |
| abstract_inverted_index.space. | 86 |
| abstract_inverted_index.channel | 9 |
| abstract_inverted_index.crucial | 3 |
| abstract_inverted_index.dataset | 96 |
| abstract_inverted_index.encoder | 53 |
| abstract_inverted_index.learned | 100 |
| abstract_inverted_index.letter, | 14 |
| abstract_inverted_index.massive | 5, 19 |
| abstract_inverted_index.propose | 16 |
| abstract_inverted_index.results | 88 |
| abstract_inverted_index.samples | 45, 62, 76 |
| abstract_inverted_index.trained | 55 |
| abstract_inverted_index.accuracy | 105 |
| abstract_inverted_index.anchor's | 70, 82 |
| abstract_inverted_index.compared | 107 |
| abstract_inverted_index.dataset. | 50 |
| abstract_inverted_index.designed | 38 |
| abstract_inverted_index.function | 36 |
| abstract_inverted_index.improves | 103 |
| abstract_inverted_index.learning | 23 |
| abstract_inverted_index.methods. | 112 |
| abstract_inverted_index.multiple | 40 |
| abstract_inverted_index.negative | 43, 75 |
| abstract_inverted_index.positive | 41, 61 |
| abstract_inverted_index.training | 49 |
| abstract_inverted_index.encoding, | 71 |
| abstract_inverted_index.encodings | 73 |
| abstract_inverted_index.learning. | 32 |
| abstract_inverted_index.utilizing | 8 |
| abstract_inverted_index.Evaluation | 87 |
| abstract_inverted_index.Similarity | 0 |
| abstract_inverted_index.real-world | 94 |
| abstract_inverted_index.similarity | 22, 101 |
| abstract_inverted_index.considering | 39 |
| abstract_inverted_index.contrastive | 31, 34 |
| abstract_inverted_index.positioning | 7, 91, 104 |
| abstract_inverted_index.convolutional | 27 |
| abstract_inverted_index.significantly | 106 |
| abstract_inverted_index.network~(DCNN) | 29 |
| abstract_inverted_index.representation | 85 |
| abstract_inverted_index.state-of-the-art | 111 |
| abstract_inverted_index.fingerprint-based | 90 |
| abstract_inverted_index.information~(CSI). | 11 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 5 |
| citation_normalized_percentile |