Supplementary Figure S4 from Quantitative and Morphology-Based Deep Convolutional Neural Network Approaches for Osteosarcoma Survival Prediction in the Neoadjuvant and Metastatic Settings Article Swipe
Nicolas Coudray
,
Michael Occidental
,
José G. Mantilla
,
Adalberto Claudio Quiros
,
Ke Yuan
,
Ján Balko
,
Aristotelis Tsirigos
,
George Jour
·
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.1158/1078-0432.28227527
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.1158/1078-0432.28227527
Top 144 tiles from necrosis regions assigned with the highest probability as poor (row 1) or bad (row 2) outcome by the AI, and belonging to patients with poor (column 1) or bad (column 2) outcome.
Related Topics
Concepts
Metadata
- Type
- preprint
- Language
- en
- Landing Page
- https://doi.org/10.1158/1078-0432.28227527
- OA Status
- gold
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4406548126
All OpenAlex metadata
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4406548126Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1158/1078-0432.28227527Digital Object Identifier
- Title
-
Supplementary Figure S4 from Quantitative and Morphology-Based Deep Convolutional Neural Network Approaches for Osteosarcoma Survival Prediction in the Neoadjuvant and Metastatic SettingsWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-01-17Full publication date if available
- Authors
-
Nicolas Coudray, Michael Occidental, José G. Mantilla, Adalberto Claudio Quiros, Ke Yuan, Ján Balko, Aristotelis Tsirigos, George JourList of authors in order
- Landing page
-
https://doi.org/10.1158/1078-0432.28227527Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.1158/1078-0432.28227527Direct OA link when available
- Concepts
-
Osteosarcoma, Convolutional neural network, Computer science, Morphology (biology), Overall survival, Artificial intelligence, Oncology, Medicine, Cancer research, Biology, GeneticsTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4406548126 |
|---|---|
| doi | https://doi.org/10.1158/1078-0432.28227527 |
| ids.doi | https://doi.org/10.1158/1078-0432.28227527 |
| ids.openalex | https://openalex.org/W4406548126 |
| fwci | 0.0 |
| type | preprint |
| title | Supplementary Figure S4 from Quantitative and Morphology-Based Deep Convolutional Neural Network Approaches for Osteosarcoma Survival Prediction in the Neoadjuvant and Metastatic Settings |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T12422 |
| topics[0].field.id | https://openalex.org/fields/27 |
| topics[0].field.display_name | Medicine |
| topics[0].score | 0.9901999831199646 |
| topics[0].domain.id | https://openalex.org/domains/4 |
| topics[0].domain.display_name | Health Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2741 |
| topics[0].subfield.display_name | Radiology, Nuclear Medicine and Imaging |
| topics[0].display_name | Radiomics and Machine Learning in Medical Imaging |
| topics[1].id | https://openalex.org/T10862 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9487000107765198 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1702 |
| topics[1].subfield.display_name | Artificial Intelligence |
| topics[1].display_name | AI in cancer detection |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C2777760704 |
| concepts[0].level | 2 |
| concepts[0].score | 0.8412281274795532 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q549534 |
| concepts[0].display_name | Osteosarcoma |
| concepts[1].id | https://openalex.org/C81363708 |
| concepts[1].level | 2 |
| concepts[1].score | 0.7798296809196472 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q17084460 |
| concepts[1].display_name | Convolutional neural network |
| concepts[2].id | https://openalex.org/C41008148 |
| concepts[2].level | 0 |
| concepts[2].score | 0.5664420127868652 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[2].display_name | Computer science |
| concepts[3].id | https://openalex.org/C499950583 |
| concepts[3].level | 2 |
| concepts[3].score | 0.435609370470047 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q183252 |
| concepts[3].display_name | Morphology (biology) |
| concepts[4].id | https://openalex.org/C3019894029 |
| concepts[4].level | 2 |
| concepts[4].score | 0.43031591176986694 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q332823 |
| concepts[4].display_name | Overall survival |
| concepts[5].id | https://openalex.org/C154945302 |
| concepts[5].level | 1 |
| concepts[5].score | 0.42820677161216736 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[5].display_name | Artificial intelligence |
| concepts[6].id | https://openalex.org/C143998085 |
| concepts[6].level | 1 |
| concepts[6].score | 0.37854257225990295 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q162555 |
| concepts[6].display_name | Oncology |
| concepts[7].id | https://openalex.org/C71924100 |
| concepts[7].level | 0 |
| concepts[7].score | 0.37489575147628784 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q11190 |
| concepts[7].display_name | Medicine |
| concepts[8].id | https://openalex.org/C502942594 |
| concepts[8].level | 1 |
| concepts[8].score | 0.1888607144355774 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q3421914 |
| concepts[8].display_name | Cancer research |
| concepts[9].id | https://openalex.org/C86803240 |
| concepts[9].level | 0 |
| concepts[9].score | 0.110709547996521 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q420 |
| concepts[9].display_name | Biology |
| concepts[10].id | https://openalex.org/C54355233 |
| concepts[10].level | 1 |
| concepts[10].score | 0.0 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q7162 |
| concepts[10].display_name | Genetics |
| keywords[0].id | https://openalex.org/keywords/osteosarcoma |
| keywords[0].score | 0.8412281274795532 |
| keywords[0].display_name | Osteosarcoma |
| keywords[1].id | https://openalex.org/keywords/convolutional-neural-network |
| keywords[1].score | 0.7798296809196472 |
| keywords[1].display_name | Convolutional neural network |
| keywords[2].id | https://openalex.org/keywords/computer-science |
| keywords[2].score | 0.5664420127868652 |
| keywords[2].display_name | Computer science |
| keywords[3].id | https://openalex.org/keywords/morphology |
| keywords[3].score | 0.435609370470047 |
| keywords[3].display_name | Morphology (biology) |
| keywords[4].id | https://openalex.org/keywords/overall-survival |
| keywords[4].score | 0.43031591176986694 |
| keywords[4].display_name | Overall survival |
| keywords[5].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[5].score | 0.42820677161216736 |
| keywords[5].display_name | Artificial intelligence |
| keywords[6].id | https://openalex.org/keywords/oncology |
| keywords[6].score | 0.37854257225990295 |
| keywords[6].display_name | Oncology |
| keywords[7].id | https://openalex.org/keywords/medicine |
| keywords[7].score | 0.37489575147628784 |
| keywords[7].display_name | Medicine |
| keywords[8].id | https://openalex.org/keywords/cancer-research |
| keywords[8].score | 0.1888607144355774 |
| keywords[8].display_name | Cancer research |
| keywords[9].id | https://openalex.org/keywords/biology |
| keywords[9].score | 0.110709547996521 |
| keywords[9].display_name | Biology |
| language | en |
| locations[0].id | doi:10.1158/1078-0432.28227527 |
| locations[0].is_oa | True |
| locations[0].source | |
| locations[0].license | cc-by |
| locations[0].pdf_url | |
| locations[0].version | acceptedVersion |
| locations[0].raw_type | posted-content |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | https://doi.org/10.1158/1078-0432.28227527 |
| locations[1].id | pmh:oai:figshare.com:article/28227527 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400572 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | OPAL (Open@LaTrobe) (La Trobe University) |
| locations[1].source.host_organization | https://openalex.org/I196829312 |
| locations[1].source.host_organization_name | La Trobe University |
| locations[1].source.host_organization_lineage | https://openalex.org/I196829312 |
| locations[1].license | cc-by |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | Figure |
| locations[1].license_id | https://openalex.org/licenses/cc-by |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5055117782 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-6050-2219 |
| authorships[0].author.display_name | Nicolas Coudray |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Nicolas Coudray |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5058953095 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-0314-9439 |
| authorships[1].author.display_name | Michael Occidental |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Michael A. Occidental |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5080663407 |
| authorships[2].author.orcid | https://orcid.org/0000-0003-4752-6459 |
| authorships[2].author.display_name | José G. Mantilla |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Jose G. Mantilla |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5086350418 |
| authorships[3].author.orcid | https://orcid.org/0000-0003-4804-0741 |
| authorships[3].author.display_name | Adalberto Claudio Quiros |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Adalberto Claudio Quiros |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5018793685 |
| authorships[4].author.orcid | https://orcid.org/0000-0002-2318-1460 |
| authorships[4].author.display_name | Ke Yuan |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Ke Yuan |
| authorships[4].is_corresponding | False |
| authorships[5].author.id | https://openalex.org/A5083010526 |
| authorships[5].author.orcid | https://orcid.org/0000-0003-0451-2786 |
| authorships[5].author.display_name | Ján Balko |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Jan Balko |
| authorships[5].is_corresponding | False |
| authorships[6].author.id | https://openalex.org/A5051845185 |
| authorships[6].author.orcid | https://orcid.org/0000-0002-7512-8477 |
| authorships[6].author.display_name | Aristotelis Tsirigos |
| authorships[6].author_position | middle |
| authorships[6].raw_author_name | Aristotelis Tsirigos |
| authorships[6].is_corresponding | False |
| authorships[7].author.id | https://openalex.org/A5073836752 |
| authorships[7].author.orcid | https://orcid.org/0000-0001-8916-8966 |
| authorships[7].author.display_name | George Jour |
| authorships[7].author_position | last |
| authorships[7].raw_author_name | George Jour |
| authorships[7].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.1158/1078-0432.28227527 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Supplementary Figure S4 from Quantitative and Morphology-Based Deep Convolutional Neural Network Approaches for Osteosarcoma Survival Prediction in the Neoadjuvant and Metastatic Settings |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T12422 |
| primary_topic.field.id | https://openalex.org/fields/27 |
| primary_topic.field.display_name | Medicine |
| primary_topic.score | 0.9901999831199646 |
| primary_topic.domain.id | https://openalex.org/domains/4 |
| primary_topic.domain.display_name | Health Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2741 |
| primary_topic.subfield.display_name | Radiology, Nuclear Medicine and Imaging |
| primary_topic.display_name | Radiomics and Machine Learning in Medical Imaging |
| related_works | https://openalex.org/W4205296404, https://openalex.org/W2320346276, https://openalex.org/W3178656640, https://openalex.org/W2353768080, https://openalex.org/W4405750198, https://openalex.org/W2341065473, https://openalex.org/W2588071641, https://openalex.org/W4214634726, https://openalex.org/W2059878314, https://openalex.org/W855283967 |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | doi:10.1158/1078-0432.28227527 |
| best_oa_location.is_oa | True |
| best_oa_location.source | |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | |
| best_oa_location.version | acceptedVersion |
| best_oa_location.raw_type | posted-content |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | https://doi.org/10.1158/1078-0432.28227527 |
| primary_location.id | doi:10.1158/1078-0432.28227527 |
| primary_location.is_oa | True |
| primary_location.source | |
| primary_location.license | cc-by |
| primary_location.pdf_url | |
| primary_location.version | acceptedVersion |
| primary_location.raw_type | posted-content |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | https://doi.org/10.1158/1078-0432.28227527 |
| publication_date | 2025-01-17 |
| publication_year | 2025 |
| referenced_works_count | 0 |
| abstract_inverted_index.1) | 14, 30 |
| abstract_inverted_index.2) | 18, 34 |
| abstract_inverted_index.as | 11 |
| abstract_inverted_index.by | 20 |
| abstract_inverted_index.or | 15, 31 |
| abstract_inverted_index.to | 25 |
| abstract_inverted_index.144 | 1 |
| abstract_inverted_index.AI, | 22 |
| abstract_inverted_index.and | 23 |
| abstract_inverted_index.bad | 16, 32 |
| abstract_inverted_index.the | 8, 21 |
| abstract_inverted_index.(row | 13, 17 |
| abstract_inverted_index.from | 3 |
| abstract_inverted_index.poor | 12, 28 |
| abstract_inverted_index.with | 7, 27 |
| abstract_inverted_index.tiles | 2 |
| abstract_inverted_index.(column | 29, 33 |
| abstract_inverted_index.highest | 9 |
| abstract_inverted_index.outcome | 19 |
| abstract_inverted_index.regions | 5 |
| abstract_inverted_index.assigned | 6 |
| abstract_inverted_index.necrosis | 4 |
| abstract_inverted_index.patients | 26 |
| abstract_inverted_index.belonging | 24 |
| abstract_inverted_index.probability | 10 |
| abstract_inverted_index.<p>Top | 0 |
| abstract_inverted_index.outcome.</p> | 35 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 8 |
| citation_normalized_percentile.value | 0.01791985 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |