Supplementary File 3 from Bayesian Machine Learning Enables Identification of Transcriptional Network Disruptions Associated with Drug-Resistant Prostate Cancer Article Swipe
Charles Blatti
,
Jesús de la Fuente
,
Huanyao Gao
,
Irene Marín-Goñi
,
Zikun Chen
,
Sihai Dave Zhao
,
Winston Tan
,
Richard M. Weinshilboum
,
Krishna R. Kalari
,
Liewei Wang
,
Mikel Hernáez
·
YOU?
·
· 2023
· Open Access
·
· DOI: https://doi.org/10.1158/0008-5472.22633049.v1
YOU?
·
· 2023
· Open Access
·
· DOI: https://doi.org/10.1158/0008-5472.22633049.v1
Supplementary File 3: Excel file with Supplementary tables S6 - S9
Related Topics
Concepts
Metadata
- Type
- preprint
- Language
- en
- Landing Page
- https://doi.org/10.1158/0008-5472.22633049.v1
- OA Status
- gold
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4365510440
All OpenAlex metadata
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4365510440Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1158/0008-5472.22633049.v1Digital Object Identifier
- Title
-
Supplementary File 3 from Bayesian Machine Learning Enables Identification of Transcriptional Network Disruptions Associated with Drug-Resistant Prostate CancerWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2023Year of publication
- Publication date
-
2023-04-14Full publication date if available
- Authors
-
Charles Blatti, Jesús de la Fuente, Huanyao Gao, Irene Marín-Goñi, Zikun Chen, Sihai Dave Zhao, Winston Tan, Richard M. Weinshilboum, Krishna R. Kalari, Liewei Wang, Mikel HernáezList of authors in order
- Landing page
-
https://doi.org/10.1158/0008-5472.22633049.v1Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.1158/0008-5472.22633049.v1Direct OA link when available
- Concepts
-
Identification (biology), Bayesian network, Prostate cancer, Computer science, Cancer, Bayesian probability, Artificial intelligence, Machine learning, Computational biology, Medicine, Internal medicine, Biology, BotanyTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4365510440 |
|---|---|
| doi | https://doi.org/10.1158/0008-5472.22633049.v1 |
| ids.doi | https://doi.org/10.1158/0008-5472.22633049.v1 |
| ids.openalex | https://openalex.org/W4365510440 |
| fwci | 0.0 |
| type | preprint |
| title | Supplementary File 3 from Bayesian Machine Learning Enables Identification of Transcriptional Network Disruptions Associated with Drug-Resistant Prostate Cancer |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10887 |
| topics[0].field.id | https://openalex.org/fields/13 |
| topics[0].field.display_name | Biochemistry, Genetics and Molecular Biology |
| topics[0].score | 0.9775999784469604 |
| topics[0].domain.id | https://openalex.org/domains/1 |
| topics[0].domain.display_name | Life Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1312 |
| topics[0].subfield.display_name | Molecular Biology |
| topics[0].display_name | Bioinformatics and Genomic Networks |
| topics[1].id | https://openalex.org/T10211 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9506999850273132 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1703 |
| topics[1].subfield.display_name | Computational Theory and Mathematics |
| topics[1].display_name | Computational Drug Discovery Methods |
| topics[2].id | https://openalex.org/T10261 |
| topics[2].field.id | https://openalex.org/fields/13 |
| topics[2].field.display_name | Biochemistry, Genetics and Molecular Biology |
| topics[2].score | 0.9337999820709229 |
| topics[2].domain.id | https://openalex.org/domains/1 |
| topics[2].domain.display_name | Life Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1311 |
| topics[2].subfield.display_name | Genetics |
| topics[2].display_name | Genetic Associations and Epidemiology |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C116834253 |
| concepts[0].level | 2 |
| concepts[0].score | 0.7754186391830444 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q2039217 |
| concepts[0].display_name | Identification (biology) |
| concepts[1].id | https://openalex.org/C33724603 |
| concepts[1].level | 2 |
| concepts[1].score | 0.6795765161514282 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q812540 |
| concepts[1].display_name | Bayesian network |
| concepts[2].id | https://openalex.org/C2780192828 |
| concepts[2].level | 3 |
| concepts[2].score | 0.6507152318954468 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q181257 |
| concepts[2].display_name | Prostate cancer |
| concepts[3].id | https://openalex.org/C41008148 |
| concepts[3].level | 0 |
| concepts[3].score | 0.5618206262588501 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[3].display_name | Computer science |
| concepts[4].id | https://openalex.org/C121608353 |
| concepts[4].level | 2 |
| concepts[4].score | 0.515333354473114 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q12078 |
| concepts[4].display_name | Cancer |
| concepts[5].id | https://openalex.org/C107673813 |
| concepts[5].level | 2 |
| concepts[5].score | 0.4650249481201172 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q812534 |
| concepts[5].display_name | Bayesian probability |
| concepts[6].id | https://openalex.org/C154945302 |
| concepts[6].level | 1 |
| concepts[6].score | 0.41608238220214844 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[6].display_name | Artificial intelligence |
| concepts[7].id | https://openalex.org/C119857082 |
| concepts[7].level | 1 |
| concepts[7].score | 0.41281285881996155 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[7].display_name | Machine learning |
| concepts[8].id | https://openalex.org/C70721500 |
| concepts[8].level | 1 |
| concepts[8].score | 0.39138346910476685 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q177005 |
| concepts[8].display_name | Computational biology |
| concepts[9].id | https://openalex.org/C71924100 |
| concepts[9].level | 0 |
| concepts[9].score | 0.30780160427093506 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q11190 |
| concepts[9].display_name | Medicine |
| concepts[10].id | https://openalex.org/C126322002 |
| concepts[10].level | 1 |
| concepts[10].score | 0.19688168168067932 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q11180 |
| concepts[10].display_name | Internal medicine |
| concepts[11].id | https://openalex.org/C86803240 |
| concepts[11].level | 0 |
| concepts[11].score | 0.18585392832756042 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q420 |
| concepts[11].display_name | Biology |
| concepts[12].id | https://openalex.org/C59822182 |
| concepts[12].level | 1 |
| concepts[12].score | 0.0 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q441 |
| concepts[12].display_name | Botany |
| keywords[0].id | https://openalex.org/keywords/identification |
| keywords[0].score | 0.7754186391830444 |
| keywords[0].display_name | Identification (biology) |
| keywords[1].id | https://openalex.org/keywords/bayesian-network |
| keywords[1].score | 0.6795765161514282 |
| keywords[1].display_name | Bayesian network |
| keywords[2].id | https://openalex.org/keywords/prostate-cancer |
| keywords[2].score | 0.6507152318954468 |
| keywords[2].display_name | Prostate cancer |
| keywords[3].id | https://openalex.org/keywords/computer-science |
| keywords[3].score | 0.5618206262588501 |
| keywords[3].display_name | Computer science |
| keywords[4].id | https://openalex.org/keywords/cancer |
| keywords[4].score | 0.515333354473114 |
| keywords[4].display_name | Cancer |
| keywords[5].id | https://openalex.org/keywords/bayesian-probability |
| keywords[5].score | 0.4650249481201172 |
| keywords[5].display_name | Bayesian probability |
| keywords[6].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[6].score | 0.41608238220214844 |
| keywords[6].display_name | Artificial intelligence |
| keywords[7].id | https://openalex.org/keywords/machine-learning |
| keywords[7].score | 0.41281285881996155 |
| keywords[7].display_name | Machine learning |
| keywords[8].id | https://openalex.org/keywords/computational-biology |
| keywords[8].score | 0.39138346910476685 |
| keywords[8].display_name | Computational biology |
| keywords[9].id | https://openalex.org/keywords/medicine |
| keywords[9].score | 0.30780160427093506 |
| keywords[9].display_name | Medicine |
| keywords[10].id | https://openalex.org/keywords/internal-medicine |
| keywords[10].score | 0.19688168168067932 |
| keywords[10].display_name | Internal medicine |
| keywords[11].id | https://openalex.org/keywords/biology |
| keywords[11].score | 0.18585392832756042 |
| keywords[11].display_name | Biology |
| language | en |
| locations[0].id | doi:10.1158/0008-5472.22633049.v1 |
| locations[0].is_oa | True |
| locations[0].source | |
| locations[0].license | cc-by |
| locations[0].pdf_url | |
| locations[0].version | acceptedVersion |
| locations[0].raw_type | posted-content |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | https://doi.org/10.1158/0008-5472.22633049.v1 |
| locations[1].id | pmh:oai:figshare.com:article/22633049 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400572 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | OPAL (Open@LaTrobe) (La Trobe University) |
| locations[1].source.host_organization | https://openalex.org/I196829312 |
| locations[1].source.host_organization_name | La Trobe University |
| locations[1].source.host_organization_lineage | https://openalex.org/I196829312 |
| locations[1].license | cc-by |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | Dataset |
| locations[1].license_id | https://openalex.org/licenses/cc-by |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://figshare.com/articles/dataset/Supplementary_File_3_from_Bayesian_Machine_Learning_Enables_Identification_of_Transcriptional_Network_Disruptions_Associated_with_Drug-Resistant_Prostate_Cancer/22633049 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5065050523 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-4683-6271 |
| authorships[0].author.display_name | Charles Blatti |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Charles Blatti |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5055472788 |
| authorships[1].author.orcid | https://orcid.org/0000-0003-1856-2469 |
| authorships[1].author.display_name | Jesús de la Fuente |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Jesús de la Fuente |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5068630513 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-9441-9579 |
| authorships[2].author.display_name | Huanyao Gao |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Huanyao Gao |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5087163699 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-5060-0712 |
| authorships[3].author.display_name | Irene Marín-Goñi |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Irene Marín-Goñi |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5024320652 |
| authorships[4].author.orcid | https://orcid.org/0000-0002-9933-9658 |
| authorships[4].author.display_name | Zikun Chen |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Zikun Chen |
| authorships[4].is_corresponding | False |
| authorships[5].author.id | https://openalex.org/A5071172253 |
| authorships[5].author.orcid | https://orcid.org/0000-0001-5980-5071 |
| authorships[5].author.display_name | Sihai Dave Zhao |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Sihai D. Zhao |
| authorships[5].is_corresponding | False |
| authorships[6].author.id | https://openalex.org/A5006833753 |
| authorships[6].author.orcid | https://orcid.org/0000-0003-4706-0310 |
| authorships[6].author.display_name | Winston Tan |
| authorships[6].author_position | middle |
| authorships[6].raw_author_name | Winston Tan |
| authorships[6].is_corresponding | False |
| authorships[7].author.id | https://openalex.org/A5056312367 |
| authorships[7].author.orcid | https://orcid.org/0000-0002-4911-7985 |
| authorships[7].author.display_name | Richard M. Weinshilboum |
| authorships[7].author_position | middle |
| authorships[7].raw_author_name | Richard Weinshilboum |
| authorships[7].is_corresponding | False |
| authorships[8].author.id | https://openalex.org/A5085014608 |
| authorships[8].author.orcid | https://orcid.org/0000-0001-8944-8378 |
| authorships[8].author.display_name | Krishna R. Kalari |
| authorships[8].author_position | middle |
| authorships[8].raw_author_name | Krishna R. Kalari |
| authorships[8].is_corresponding | False |
| authorships[9].author.id | https://openalex.org/A5069578729 |
| authorships[9].author.orcid | https://orcid.org/0000-0003-3818-8531 |
| authorships[9].author.display_name | Liewei Wang |
| authorships[9].author_position | middle |
| authorships[9].raw_author_name | Liewei Wang |
| authorships[9].is_corresponding | False |
| authorships[10].author.id | https://openalex.org/A5044149683 |
| authorships[10].author.orcid | https://orcid.org/0000-0003-0443-2305 |
| authorships[10].author.display_name | Mikel Hernáez |
| authorships[10].author_position | last |
| authorships[10].raw_author_name | Mikel Hernaez |
| authorships[10].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.1158/0008-5472.22633049.v1 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Supplementary File 3 from Bayesian Machine Learning Enables Identification of Transcriptional Network Disruptions Associated with Drug-Resistant Prostate Cancer |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10887 |
| primary_topic.field.id | https://openalex.org/fields/13 |
| primary_topic.field.display_name | Biochemistry, Genetics and Molecular Biology |
| primary_topic.score | 0.9775999784469604 |
| primary_topic.domain.id | https://openalex.org/domains/1 |
| primary_topic.domain.display_name | Life Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1312 |
| primary_topic.subfield.display_name | Molecular Biology |
| primary_topic.display_name | Bioinformatics and Genomic Networks |
| related_works | https://openalex.org/W299695548, https://openalex.org/W3171449477, https://openalex.org/W2384122898, https://openalex.org/W151774199, https://openalex.org/W4281885123, https://openalex.org/W2345040638, https://openalex.org/W2087041286, https://openalex.org/W2625285070, https://openalex.org/W2071753433, https://openalex.org/W2782773427 |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | doi:10.1158/0008-5472.22633049.v1 |
| best_oa_location.is_oa | True |
| best_oa_location.source | |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | |
| best_oa_location.version | acceptedVersion |
| best_oa_location.raw_type | posted-content |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | https://doi.org/10.1158/0008-5472.22633049.v1 |
| primary_location.id | doi:10.1158/0008-5472.22633049.v1 |
| primary_location.is_oa | True |
| primary_location.source | |
| primary_location.license | cc-by |
| primary_location.pdf_url | |
| primary_location.version | acceptedVersion |
| primary_location.raw_type | posted-content |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | https://doi.org/10.1158/0008-5472.22633049.v1 |
| publication_date | 2023-04-14 |
| publication_year | 2023 |
| referenced_works_count | 0 |
| abstract_inverted_index.- | 9 |
| abstract_inverted_index.3: | 2 |
| abstract_inverted_index.S6 | 8 |
| abstract_inverted_index.File | 1 |
| abstract_inverted_index.file | 4 |
| abstract_inverted_index.with | 5 |
| abstract_inverted_index.Excel | 3 |
| abstract_inverted_index.tables | 7 |
| abstract_inverted_index.S9</p> | 10 |
| abstract_inverted_index.Supplementary | 6 |
| abstract_inverted_index.<p>Supplementary | 0 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 11 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/3 |
| sustainable_development_goals[0].score | 0.4399999976158142 |
| sustainable_development_goals[0].display_name | Good health and well-being |
| citation_normalized_percentile.value | 0.22269878 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |