Supplementary Material for: Reproducible Naevus Counts Using 3D Total Body Photography and Convolutional Neural Networks Article Swipe
YOU?
·
· 2021
· Open Access
·
· DOI: https://doi.org/10.6084/m9.figshare.14931900
Background: The number of naevi on a person is the strongest risk factor for melanoma; however, naevus counting is highly variable due to lack of consistent methodology and lack of inter-rater agreement. Machine learning has been shown to be a valuable tool for image classification in dermatology. Objectives: To test whether automated, reproducible naevus counts are possible through the combination of convolutional neural networks (CNN) and three-dimensional (3D) total body imaging. Methods: Total body images from a study of naevi in the general population were used for the training (82 subjects, 57,742 lesions) and testing (10 subjects; 4,868 lesions) datasets for the development of a CNN. Lesions were labelled as naevi, or not (“non-naevi”), by a senior dermatologist as the gold standard. Performance of the CNN was assessed using sensitivity, specificity, and Cohen’s kappa, and evaluated at the lesion level and person level. Results: Lesion-level analysis comparing the automated counts to the gold standard showed a sensitivity and specificity of 79% (76–83%) and 91% (90–92%), respectively, for lesions ≥2 mm, and 84% (75–91%) and 91% (88–94%) for lesions ≥5 mm. Cohen’s kappa was 0.56 (0.53–0.59) indicating moderate agreement for naevi ≥2 mm, and substantial agreement (0.72, 0.63–0.80) for naevi ≥5 mm. For the 10 individuals in the test set, person-level agreement was assessed as categories with 70% agreement between the automated and gold standard counts. Agreement was lower in subjects with numerous seborrhoeic keratoses. Conclusion: Automated naevus counts with reasonable agreement to those of an expert clinician are possible through the combination of 3D total body photography and CNNs. Such an algorithm may provide a faster, reproducible method over the traditional in person total body naevus counts.
Related Topics
- Type
- dataset
- Language
- en
- Landing Page
- https://doi.org/10.6084/m9.figshare.14931900
- OA Status
- gold
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4394107014
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4394107014Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.6084/m9.figshare.14931900Digital Object Identifier
- Title
-
Supplementary Material for: Reproducible Naevus Counts Using 3D Total Body Photography and Convolutional Neural NetworksWork title
- Type
-
datasetOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2021Year of publication
- Publication date
-
2021-01-01Full publication date if available
- Authors
-
Brigid Betz‐Stablein, B D'Alessandro, Koh U., Elsemieke I. Plasmeijer, Monika Janda, M Sadewa Wicaksana W, Rainer Hofmann‐Wellenhof, Green A.C., Soyer H.P.List of authors in order
- Landing page
-
https://doi.org/10.6084/m9.figshare.14931900Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.6084/m9.figshare.14931900Direct OA link when available
- Concepts
-
Convolutional neural network, Photography, Cartography, Pattern recognition (psychology), Artificial intelligence, Computer science, Computer graphics (images), Geography, Art, Visual artsTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4394107014 |
|---|---|
| doi | https://doi.org/10.6084/m9.figshare.14931900 |
| ids.doi | https://doi.org/10.6084/m9.figshare.14931900 |
| ids.openalex | https://openalex.org/W4394107014 |
| fwci | |
| type | dataset |
| title | Supplementary Material for: Reproducible Naevus Counts Using 3D Total Body Photography and Convolutional Neural Networks |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10392 |
| topics[0].field.id | https://openalex.org/fields/27 |
| topics[0].field.display_name | Medicine |
| topics[0].score | 0.973800003528595 |
| topics[0].domain.id | https://openalex.org/domains/4 |
| topics[0].domain.display_name | Health Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2730 |
| topics[0].subfield.display_name | Oncology |
| topics[0].display_name | Cutaneous Melanoma Detection and Management |
| topics[1].id | https://openalex.org/T12173 |
| topics[1].field.id | https://openalex.org/fields/27 |
| topics[1].field.display_name | Medicine |
| topics[1].score | 0.928600013256073 |
| topics[1].domain.id | https://openalex.org/domains/4 |
| topics[1].domain.display_name | Health Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2746 |
| topics[1].subfield.display_name | Surgery |
| topics[1].display_name | Body Contouring and Surgery |
| topics[2].id | https://openalex.org/T11172 |
| topics[2].field.id | https://openalex.org/fields/27 |
| topics[2].field.display_name | Medicine |
| topics[2].score | 0.9265000224113464 |
| topics[2].domain.id | https://openalex.org/domains/4 |
| topics[2].domain.display_name | Health Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2708 |
| topics[2].subfield.display_name | Dermatology |
| topics[2].display_name | Dermatologic Treatments and Research |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C81363708 |
| concepts[0].level | 2 |
| concepts[0].score | 0.7695896625518799 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q17084460 |
| concepts[0].display_name | Convolutional neural network |
| concepts[1].id | https://openalex.org/C119657128 |
| concepts[1].level | 2 |
| concepts[1].score | 0.5818108320236206 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q11633 |
| concepts[1].display_name | Photography |
| concepts[2].id | https://openalex.org/C58640448 |
| concepts[2].level | 1 |
| concepts[2].score | 0.43354111909866333 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q42515 |
| concepts[2].display_name | Cartography |
| concepts[3].id | https://openalex.org/C153180895 |
| concepts[3].level | 2 |
| concepts[3].score | 0.40165939927101135 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[3].display_name | Pattern recognition (psychology) |
| concepts[4].id | https://openalex.org/C154945302 |
| concepts[4].level | 1 |
| concepts[4].score | 0.39282533526420593 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[4].display_name | Artificial intelligence |
| concepts[5].id | https://openalex.org/C41008148 |
| concepts[5].level | 0 |
| concepts[5].score | 0.3768065273761749 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[5].display_name | Computer science |
| concepts[6].id | https://openalex.org/C121684516 |
| concepts[6].level | 1 |
| concepts[6].score | 0.35389429330825806 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q7600677 |
| concepts[6].display_name | Computer graphics (images) |
| concepts[7].id | https://openalex.org/C205649164 |
| concepts[7].level | 0 |
| concepts[7].score | 0.31225717067718506 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q1071 |
| concepts[7].display_name | Geography |
| concepts[8].id | https://openalex.org/C142362112 |
| concepts[8].level | 0 |
| concepts[8].score | 0.22411298751831055 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q735 |
| concepts[8].display_name | Art |
| concepts[9].id | https://openalex.org/C153349607 |
| concepts[9].level | 1 |
| concepts[9].score | 0.12624886631965637 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q36649 |
| concepts[9].display_name | Visual arts |
| keywords[0].id | https://openalex.org/keywords/convolutional-neural-network |
| keywords[0].score | 0.7695896625518799 |
| keywords[0].display_name | Convolutional neural network |
| keywords[1].id | https://openalex.org/keywords/photography |
| keywords[1].score | 0.5818108320236206 |
| keywords[1].display_name | Photography |
| keywords[2].id | https://openalex.org/keywords/cartography |
| keywords[2].score | 0.43354111909866333 |
| keywords[2].display_name | Cartography |
| keywords[3].id | https://openalex.org/keywords/pattern-recognition |
| keywords[3].score | 0.40165939927101135 |
| keywords[3].display_name | Pattern recognition (psychology) |
| keywords[4].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[4].score | 0.39282533526420593 |
| keywords[4].display_name | Artificial intelligence |
| keywords[5].id | https://openalex.org/keywords/computer-science |
| keywords[5].score | 0.3768065273761749 |
| keywords[5].display_name | Computer science |
| keywords[6].id | https://openalex.org/keywords/computer-graphics |
| keywords[6].score | 0.35389429330825806 |
| keywords[6].display_name | Computer graphics (images) |
| keywords[7].id | https://openalex.org/keywords/geography |
| keywords[7].score | 0.31225717067718506 |
| keywords[7].display_name | Geography |
| keywords[8].id | https://openalex.org/keywords/art |
| keywords[8].score | 0.22411298751831055 |
| keywords[8].display_name | Art |
| keywords[9].id | https://openalex.org/keywords/visual-arts |
| keywords[9].score | 0.12624886631965637 |
| keywords[9].display_name | Visual arts |
| language | en |
| locations[0].id | doi:10.6084/m9.figshare.14931900 |
| locations[0].is_oa | True |
| locations[0].source | |
| locations[0].license | cc-by |
| locations[0].pdf_url | |
| locations[0].version | |
| locations[0].raw_type | dataset |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | False |
| locations[0].is_published | |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | https://doi.org/10.6084/m9.figshare.14931900 |
| indexed_in | datacite |
| authorships[0].author.id | https://openalex.org/A5023406639 |
| authorships[0].author.orcid | https://orcid.org/0000-0003-3876-501X |
| authorships[0].author.display_name | Brigid Betz‐Stablein |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Betz-Stablein B. |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5012872167 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-0050-401X |
| authorships[1].author.display_name | B D'Alessandro |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | D’Alessandro B. |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5095105108 |
| authorships[2].author.orcid | |
| authorships[2].author.display_name | Koh U. |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Koh U. |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5020636411 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-8846-1930 |
| authorships[3].author.display_name | Elsemieke I. Plasmeijer |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Plasmeijer E. |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5055581623 |
| authorships[4].author.orcid | https://orcid.org/0000-0002-1728-8085 |
| authorships[4].author.display_name | Monika Janda |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Janda M. |
| authorships[4].is_corresponding | False |
| authorships[5].author.id | https://openalex.org/A5109662290 |
| authorships[5].author.orcid | |
| authorships[5].author.display_name | M Sadewa Wicaksana W |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Menzies S.W. |
| authorships[5].is_corresponding | False |
| authorships[6].author.id | https://openalex.org/A5008065839 |
| authorships[6].author.orcid | https://orcid.org/0000-0001-8688-3243 |
| authorships[6].author.display_name | Rainer Hofmann‐Wellenhof |
| authorships[6].author_position | middle |
| authorships[6].raw_author_name | Hofmann-Wellenhof R. |
| authorships[6].is_corresponding | False |
| authorships[7].author.id | https://openalex.org/A5113165978 |
| authorships[7].author.orcid | |
| authorships[7].author.display_name | Green A.C. |
| authorships[7].author_position | middle |
| authorships[7].raw_author_name | Green A.C. |
| authorships[7].is_corresponding | False |
| authorships[8].author.id | https://openalex.org/A5084639703 |
| authorships[8].author.orcid | |
| authorships[8].author.display_name | Soyer H.P. |
| authorships[8].author_position | last |
| authorships[8].raw_author_name | Soyer H.P. |
| authorships[8].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.6084/m9.figshare.14931900 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Supplementary Material for: Reproducible Naevus Counts Using 3D Total Body Photography and Convolutional Neural Networks |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T10392 |
| primary_topic.field.id | https://openalex.org/fields/27 |
| primary_topic.field.display_name | Medicine |
| primary_topic.score | 0.973800003528595 |
| primary_topic.domain.id | https://openalex.org/domains/4 |
| primary_topic.domain.display_name | Health Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2730 |
| primary_topic.subfield.display_name | Oncology |
| primary_topic.display_name | Cutaneous Melanoma Detection and Management |
| related_works | https://openalex.org/W4385791615, https://openalex.org/W2349010557, https://openalex.org/W2528823524, https://openalex.org/W794439364, https://openalex.org/W2357153109, https://openalex.org/W4293226380, https://openalex.org/W2899956008, https://openalex.org/W2603177951, https://openalex.org/W4200140830, https://openalex.org/W2088009925 |
| cited_by_count | 0 |
| locations_count | 1 |
| best_oa_location.id | doi:10.6084/m9.figshare.14931900 |
| best_oa_location.is_oa | True |
| best_oa_location.source | |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | |
| best_oa_location.version | |
| best_oa_location.raw_type | dataset |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | https://doi.org/10.6084/m9.figshare.14931900 |
| primary_location.id | doi:10.6084/m9.figshare.14931900 |
| primary_location.is_oa | True |
| primary_location.source | |
| primary_location.license | cc-by |
| primary_location.pdf_url | |
| primary_location.version | |
| primary_location.raw_type | dataset |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | https://doi.org/10.6084/m9.figshare.14931900 |
| publication_date | 2021-01-01 |
| publication_year | 2021 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 6, 39, 76, 104, 115, 155, 264 |
| abstract_inverted_index.10 | 203 |
| abstract_inverted_index.3D | 253 |
| abstract_inverted_index.To | 48 |
| abstract_inverted_index.an | 244, 260 |
| abstract_inverted_index.as | 109, 118, 213 |
| abstract_inverted_index.at | 136 |
| abstract_inverted_index.be | 38 |
| abstract_inverted_index.by | 114 |
| abstract_inverted_index.in | 45, 80, 205, 228, 271 |
| abstract_inverted_index.is | 8, 18 |
| abstract_inverted_index.of | 3, 24, 29, 60, 78, 103, 123, 159, 243, 252 |
| abstract_inverted_index.on | 5 |
| abstract_inverted_index.or | 111 |
| abstract_inverted_index.to | 22, 37, 150, 241 |
| abstract_inverted_index.(10 | 95 |
| abstract_inverted_index.(82 | 89 |
| abstract_inverted_index.70% | 216 |
| abstract_inverted_index.79% | 160 |
| abstract_inverted_index.84% | 171 |
| abstract_inverted_index.91% | 163, 174 |
| abstract_inverted_index.CNN | 125 |
| abstract_inverted_index.For | 201 |
| abstract_inverted_index.The | 1 |
| abstract_inverted_index.and | 27, 65, 93, 131, 134, 140, 157, 162, 170, 173, 192, 221, 257 |
| abstract_inverted_index.are | 55, 247 |
| abstract_inverted_index.due | 21 |
| abstract_inverted_index.for | 13, 42, 86, 100, 166, 176, 188, 197 |
| abstract_inverted_index.has | 34 |
| abstract_inverted_index.may | 262 |
| abstract_inverted_index.mm, | 169, 191 |
| abstract_inverted_index.mm. | 179, 200 |
| abstract_inverted_index.not | 112 |
| abstract_inverted_index.the | 9, 58, 81, 87, 101, 119, 124, 137, 147, 151, 202, 206, 219, 250, 269 |
| abstract_inverted_index.was | 126, 182, 211, 226 |
| abstract_inverted_index.(3D) | 67 |
| abstract_inverted_index.0.56 | 183 |
| abstract_inverted_index.CNN. | 105 |
| abstract_inverted_index.Such | 259 |
| abstract_inverted_index.been | 35 |
| abstract_inverted_index.body | 69, 73, 255, 274 |
| abstract_inverted_index.from | 75 |
| abstract_inverted_index.gold | 120, 152, 222 |
| abstract_inverted_index.lack | 23, 28 |
| abstract_inverted_index.over | 268 |
| abstract_inverted_index.risk | 11 |
| abstract_inverted_index.set, | 208 |
| abstract_inverted_index.test | 49, 207 |
| abstract_inverted_index.tool | 41 |
| abstract_inverted_index.used | 85 |
| abstract_inverted_index.were | 84, 107 |
| abstract_inverted_index.with | 215, 230, 238 |
| abstract_inverted_index.≥2 | 168, 190 |
| abstract_inverted_index.≥5 | 178, 199 |
| abstract_inverted_index.(CNN) | 64 |
| abstract_inverted_index.4,868 | 97 |
| abstract_inverted_index.CNNs. | 258 |
| abstract_inverted_index.Total | 72 |
| abstract_inverted_index.image | 43 |
| abstract_inverted_index.kappa | 181 |
| abstract_inverted_index.level | 139 |
| abstract_inverted_index.lower | 227 |
| abstract_inverted_index.naevi | 4, 79, 189, 198 |
| abstract_inverted_index.shown | 36 |
| abstract_inverted_index.study | 77 |
| abstract_inverted_index.those | 242 |
| abstract_inverted_index.total | 68, 254, 273 |
| abstract_inverted_index.using | 128 |
| abstract_inverted_index.(0.72, | 195 |
| abstract_inverted_index.57,742 | 91 |
| abstract_inverted_index.counts | 54, 149, 237 |
| abstract_inverted_index.expert | 245 |
| abstract_inverted_index.factor | 12 |
| abstract_inverted_index.highly | 19 |
| abstract_inverted_index.images | 74 |
| abstract_inverted_index.kappa, | 133 |
| abstract_inverted_index.lesion | 138 |
| abstract_inverted_index.level. | 142 |
| abstract_inverted_index.method | 267 |
| abstract_inverted_index.naevi, | 110 |
| abstract_inverted_index.naevus | 16, 53, 236, 275 |
| abstract_inverted_index.neural | 62 |
| abstract_inverted_index.number | 2 |
| abstract_inverted_index.person | 7, 141, 272 |
| abstract_inverted_index.senior | 116 |
| abstract_inverted_index.showed | 154 |
| abstract_inverted_index.Lesions | 106 |
| abstract_inverted_index.Machine | 32 |
| abstract_inverted_index.between | 218 |
| abstract_inverted_index.counts. | 224, 276 |
| abstract_inverted_index.faster, | 265 |
| abstract_inverted_index.general | 82 |
| abstract_inverted_index.lesions | 167, 177 |
| abstract_inverted_index.provide | 263 |
| abstract_inverted_index.testing | 94 |
| abstract_inverted_index.through | 57, 249 |
| abstract_inverted_index.whether | 50 |
| abstract_inverted_index.analysis | 145 |
| abstract_inverted_index.assessed | 127, 212 |
| abstract_inverted_index.counting | 17 |
| abstract_inverted_index.datasets | 99 |
| abstract_inverted_index.however, | 15 |
| abstract_inverted_index.imaging. | 70 |
| abstract_inverted_index.labelled | 108 |
| abstract_inverted_index.learning | 33 |
| abstract_inverted_index.lesions) | 92, 98 |
| abstract_inverted_index.moderate | 186 |
| abstract_inverted_index.networks | 63 |
| abstract_inverted_index.numerous | 231 |
| abstract_inverted_index.possible | 56, 248 |
| abstract_inverted_index.standard | 153, 223 |
| abstract_inverted_index.subjects | 229 |
| abstract_inverted_index.training | 88 |
| abstract_inverted_index.valuable | 40 |
| abstract_inverted_index.variable | 20 |
| abstract_inverted_index.Agreement | 225 |
| abstract_inverted_index.Automated | 235 |
| abstract_inverted_index.Cohen’s | 132, 180 |
| abstract_inverted_index.agreement | 187, 194, 210, 217, 240 |
| abstract_inverted_index.algorithm | 261 |
| abstract_inverted_index.automated | 148, 220 |
| abstract_inverted_index.clinician | 246 |
| abstract_inverted_index.comparing | 146 |
| abstract_inverted_index.evaluated | 135 |
| abstract_inverted_index.melanoma; | 14 |
| abstract_inverted_index.standard. | 121 |
| abstract_inverted_index.strongest | 10 |
| abstract_inverted_index.subjects, | 90 |
| abstract_inverted_index.subjects; | 96 |
| abstract_inverted_index.(75–91%) | 172 |
| abstract_inverted_index.(76–83%) | 161 |
| abstract_inverted_index.(88–94%) | 175 |
| abstract_inverted_index.agreement. | 31 |
| abstract_inverted_index.automated, | 51 |
| abstract_inverted_index.categories | 214 |
| abstract_inverted_index.consistent | 25 |
| abstract_inverted_index.indicating | 185 |
| abstract_inverted_index.keratoses. | 233 |
| abstract_inverted_index.population | 83 |
| abstract_inverted_index.reasonable | 239 |
| abstract_inverted_index.(90–92%), | 164 |
| abstract_inverted_index.Performance | 122 |
| abstract_inverted_index.combination | 59, 251 |
| abstract_inverted_index.development | 102 |
| abstract_inverted_index.individuals | 204 |
| abstract_inverted_index.inter-rater | 30 |
| abstract_inverted_index.methodology | 26 |
| abstract_inverted_index.photography | 256 |
| abstract_inverted_index.seborrhoeic | 232 |
| abstract_inverted_index.sensitivity | 156 |
| abstract_inverted_index.specificity | 158 |
| abstract_inverted_index.substantial | 193 |
| abstract_inverted_index.traditional | 270 |
| abstract_inverted_index.0.63–0.80) | 196 |
| abstract_inverted_index.Lesion-level | 144 |
| abstract_inverted_index.dermatology. | 46 |
| abstract_inverted_index.person-level | 209 |
| abstract_inverted_index.reproducible | 52, 266 |
| abstract_inverted_index.sensitivity, | 129 |
| abstract_inverted_index.specificity, | 130 |
| abstract_inverted_index.(0.53–0.59) | 184 |
| abstract_inverted_index.convolutional | 61 |
| abstract_inverted_index.dermatologist | 117 |
| abstract_inverted_index.respectively, | 165 |
| abstract_inverted_index.classification | 44 |
| abstract_inverted_index.three-dimensional | 66 |
| abstract_inverted_index.(“non-naevi”), | 113 |
| abstract_inverted_index.<b><i>Methods:</i></b> | 71 |
| abstract_inverted_index.<b><i>Results:</i></b> | 143 |
| abstract_inverted_index.<b><i>Background:</i></b> | 0 |
| abstract_inverted_index.<b><i>Conclusion:</i></b> | 234 |
| abstract_inverted_index.<b><i>Objectives:</i></b> | 47 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 9 |
| citation_normalized_percentile |