Supplementary Material for: Using Ultrasound and Inflammation to Improve Prediction of Ischemic Stroke: A Secondary Analysis of the Multi-Ethnic Study of Atherosclerosis Article Swipe
YOU?
·
· 2021
· Open Access
·
· DOI: https://doi.org/10.6084/m9.figshare.14039321
Introduction: Current ischemic stroke risk prediction is primarily based on clinical factors, rather than imaging or laboratory markers. We examined the relationship between baseline ultrasound and inflammation measurements and subsequent primary ischemic stroke risk. Methods: In this secondary analysis of the Multi-Ethnic Study of Atherosclerosis (MESA), the primary outcome is the incident ischemic stroke during follow-up. The predictor variables are 9 carotid ultrasound-derived measurements and 6 serum inflammation measurements from the baseline study visit. We fit Cox regression models to the outcome of ischemic stroke. The baseline model included patient age, hypertension, diabetes, total cholesterol, smoking, and systolic blood pressure. Goodness-of-fit statistics were assessed to compare the baseline model to a model with ultrasound and inflammation predictor variables that remained significant when added to the baseline model. Results: We included 5,918 participants. The primary outcome of ischemic stroke was seen in 105 patients with a mean follow-up time of 7.7 years. In the Cox models, we found that carotid distensibility (CD), carotid stenosis (CS), and serum interleukin-6 (IL-6) were associated with incident stroke. Adding tertiles of CD, IL-6, and categories of CS to a baseline model that included traditional clinical vascular risk factors resulted in a better model fit than traditional risk factors alone as indicated by goodness-of-fit statistics. Conclusions: In a multiethnic cohort of patients without cerebrovascular disease at baseline, we found that CD, CS, and IL-6 helped predict the occurrence of primary ischemic stroke. Future research could evaluate if these basic ultrasound and serum measurements have implications for primary prevention efforts or clinical trial inclusion criteria.
Related Topics
- Type
- dataset
- Language
- en
- Landing Page
- https://doi.org/10.6084/m9.figshare.14039321
- OA Status
- gold
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4394464658
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4394464658Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.6084/m9.figshare.14039321Digital Object Identifier
- Title
-
Supplementary Material for: Using Ultrasound and Inflammation to Improve Prediction of Ischemic Stroke: A Secondary Analysis of the Multi-Ethnic Study of AtherosclerosisWork title
- Type
-
datasetOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2021Year of publication
- Publication date
-
2021-01-01Full publication date if available
- Authors
-
Hediyeh Baradaran, A. Delić, Ka‐Ho Wong, Nader Sheibani, Matthew D. Alexander, J. Scott McNally, Jennifer J. Majersik, Adam de HavenonList of authors in order
- Landing page
-
https://doi.org/10.6084/m9.figshare.14039321Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.6084/m9.figshare.14039321Direct OA link when available
- Concepts
-
Ischemic stroke, Ethnic group, Inflammation, Medicine, Ultrasound, Internal medicine, Stroke (engine), Cardiology, Ischemia, Engineering, Radiology, Political science, Mechanical engineering, LawTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4394464658 |
|---|---|
| doi | https://doi.org/10.6084/m9.figshare.14039321 |
| ids.doi | https://doi.org/10.6084/m9.figshare.14039321 |
| ids.openalex | https://openalex.org/W4394464658 |
| fwci | 0.0 |
| type | dataset |
| title | Supplementary Material for: Using Ultrasound and Inflammation to Improve Prediction of Ischemic Stroke: A Secondary Analysis of the Multi-Ethnic Study of Atherosclerosis |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T12979 |
| topics[0].field.id | https://openalex.org/fields/27 |
| topics[0].field.display_name | Medicine |
| topics[0].score | 0.9453999996185303 |
| topics[0].domain.id | https://openalex.org/domains/4 |
| topics[0].domain.display_name | Health Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2705 |
| topics[0].subfield.display_name | Cardiology and Cardiovascular Medicine |
| topics[0].display_name | Cardiovascular Disease and Adiposity |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C3020199598 |
| concepts[0].level | 3 |
| concepts[0].score | 0.687062680721283 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q12202 |
| concepts[0].display_name | Ischemic stroke |
| concepts[1].id | https://openalex.org/C137403100 |
| concepts[1].level | 2 |
| concepts[1].score | 0.5747238993644714 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q41710 |
| concepts[1].display_name | Ethnic group |
| concepts[2].id | https://openalex.org/C2776914184 |
| concepts[2].level | 2 |
| concepts[2].score | 0.5623356103897095 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q101991 |
| concepts[2].display_name | Inflammation |
| concepts[3].id | https://openalex.org/C71924100 |
| concepts[3].level | 0 |
| concepts[3].score | 0.5305044651031494 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q11190 |
| concepts[3].display_name | Medicine |
| concepts[4].id | https://openalex.org/C143753070 |
| concepts[4].level | 2 |
| concepts[4].score | 0.509720504283905 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q162564 |
| concepts[4].display_name | Ultrasound |
| concepts[5].id | https://openalex.org/C126322002 |
| concepts[5].level | 1 |
| concepts[5].score | 0.4715428650379181 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q11180 |
| concepts[5].display_name | Internal medicine |
| concepts[6].id | https://openalex.org/C2780645631 |
| concepts[6].level | 2 |
| concepts[6].score | 0.4699670970439911 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q671554 |
| concepts[6].display_name | Stroke (engine) |
| concepts[7].id | https://openalex.org/C164705383 |
| concepts[7].level | 1 |
| concepts[7].score | 0.4520849287509918 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q10379 |
| concepts[7].display_name | Cardiology |
| concepts[8].id | https://openalex.org/C541997718 |
| concepts[8].level | 2 |
| concepts[8].score | 0.266154408454895 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q188151 |
| concepts[8].display_name | Ischemia |
| concepts[9].id | https://openalex.org/C127413603 |
| concepts[9].level | 0 |
| concepts[9].score | 0.2031090259552002 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q11023 |
| concepts[9].display_name | Engineering |
| concepts[10].id | https://openalex.org/C126838900 |
| concepts[10].level | 1 |
| concepts[10].score | 0.16376137733459473 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q77604 |
| concepts[10].display_name | Radiology |
| concepts[11].id | https://openalex.org/C17744445 |
| concepts[11].level | 0 |
| concepts[11].score | 0.10658970475196838 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q36442 |
| concepts[11].display_name | Political science |
| concepts[12].id | https://openalex.org/C78519656 |
| concepts[12].level | 1 |
| concepts[12].score | 0.09394446015357971 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q101333 |
| concepts[12].display_name | Mechanical engineering |
| concepts[13].id | https://openalex.org/C199539241 |
| concepts[13].level | 1 |
| concepts[13].score | 0.0 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q7748 |
| concepts[13].display_name | Law |
| keywords[0].id | https://openalex.org/keywords/ischemic-stroke |
| keywords[0].score | 0.687062680721283 |
| keywords[0].display_name | Ischemic stroke |
| keywords[1].id | https://openalex.org/keywords/ethnic-group |
| keywords[1].score | 0.5747238993644714 |
| keywords[1].display_name | Ethnic group |
| keywords[2].id | https://openalex.org/keywords/inflammation |
| keywords[2].score | 0.5623356103897095 |
| keywords[2].display_name | Inflammation |
| keywords[3].id | https://openalex.org/keywords/medicine |
| keywords[3].score | 0.5305044651031494 |
| keywords[3].display_name | Medicine |
| keywords[4].id | https://openalex.org/keywords/ultrasound |
| keywords[4].score | 0.509720504283905 |
| keywords[4].display_name | Ultrasound |
| keywords[5].id | https://openalex.org/keywords/internal-medicine |
| keywords[5].score | 0.4715428650379181 |
| keywords[5].display_name | Internal medicine |
| keywords[6].id | https://openalex.org/keywords/stroke |
| keywords[6].score | 0.4699670970439911 |
| keywords[6].display_name | Stroke (engine) |
| keywords[7].id | https://openalex.org/keywords/cardiology |
| keywords[7].score | 0.4520849287509918 |
| keywords[7].display_name | Cardiology |
| keywords[8].id | https://openalex.org/keywords/ischemia |
| keywords[8].score | 0.266154408454895 |
| keywords[8].display_name | Ischemia |
| keywords[9].id | https://openalex.org/keywords/engineering |
| keywords[9].score | 0.2031090259552002 |
| keywords[9].display_name | Engineering |
| keywords[10].id | https://openalex.org/keywords/radiology |
| keywords[10].score | 0.16376137733459473 |
| keywords[10].display_name | Radiology |
| keywords[11].id | https://openalex.org/keywords/political-science |
| keywords[11].score | 0.10658970475196838 |
| keywords[11].display_name | Political science |
| keywords[12].id | https://openalex.org/keywords/mechanical-engineering |
| keywords[12].score | 0.09394446015357971 |
| keywords[12].display_name | Mechanical engineering |
| language | en |
| locations[0].id | doi:10.6084/m9.figshare.14039321 |
| locations[0].is_oa | True |
| locations[0].source | |
| locations[0].license | cc-by |
| locations[0].pdf_url | |
| locations[0].version | |
| locations[0].raw_type | dataset |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | False |
| locations[0].is_published | |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | https://doi.org/10.6084/m9.figshare.14039321 |
| indexed_in | datacite |
| authorships[0].author.id | https://openalex.org/A5008285232 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-6251-5769 |
| authorships[0].author.display_name | Hediyeh Baradaran |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | H. Baradaran |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5063856945 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-4154-0893 |
| authorships[1].author.display_name | A. Delić |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | A. Delic |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5081987324 |
| authorships[2].author.orcid | https://orcid.org/0000-0001-9597-8105 |
| authorships[2].author.display_name | Ka‐Ho Wong |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | K.-H. Wong |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5001405352 |
| authorships[3].author.orcid | https://orcid.org/0000-0003-2723-9217 |
| authorships[3].author.display_name | Nader Sheibani |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | N. Sheibani |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5011157468 |
| authorships[4].author.orcid | https://orcid.org/0000-0002-7534-5842 |
| authorships[4].author.display_name | Matthew D. Alexander |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | M. Alexander |
| authorships[4].is_corresponding | False |
| authorships[5].author.id | https://openalex.org/A5064804226 |
| authorships[5].author.orcid | https://orcid.org/0000-0003-3770-1153 |
| authorships[5].author.display_name | J. Scott McNally |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | J.S. McNally |
| authorships[5].is_corresponding | False |
| authorships[6].author.id | https://openalex.org/A5004516666 |
| authorships[6].author.orcid | https://orcid.org/0000-0003-3191-262X |
| authorships[6].author.display_name | Jennifer J. Majersik |
| authorships[6].author_position | middle |
| authorships[6].raw_author_name | J.J. Majersik |
| authorships[6].is_corresponding | False |
| authorships[7].author.id | https://openalex.org/A5054587412 |
| authorships[7].author.orcid | https://orcid.org/0000-0001-8178-8597 |
| authorships[7].author.display_name | Adam de Havenon |
| authorships[7].author_position | last |
| authorships[7].raw_author_name | A. DeHavenon |
| authorships[7].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.6084/m9.figshare.14039321 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Supplementary Material for: Using Ultrasound and Inflammation to Improve Prediction of Ischemic Stroke: A Secondary Analysis of the Multi-Ethnic Study of Atherosclerosis |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T12979 |
| primary_topic.field.id | https://openalex.org/fields/27 |
| primary_topic.field.display_name | Medicine |
| primary_topic.score | 0.9453999996185303 |
| primary_topic.domain.id | https://openalex.org/domains/4 |
| primary_topic.domain.display_name | Health Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2705 |
| primary_topic.subfield.display_name | Cardiology and Cardiovascular Medicine |
| primary_topic.display_name | Cardiovascular Disease and Adiposity |
| related_works | https://openalex.org/W2381483116, https://openalex.org/W2348506863, https://openalex.org/W2371917728, https://openalex.org/W2007982614, https://openalex.org/W2389579140, https://openalex.org/W2113257626, https://openalex.org/W2512568326, https://openalex.org/W2808021644, https://openalex.org/W1984243130, https://openalex.org/W2355279474 |
| cited_by_count | 0 |
| locations_count | 1 |
| best_oa_location.id | doi:10.6084/m9.figshare.14039321 |
| best_oa_location.is_oa | True |
| best_oa_location.source | |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | |
| best_oa_location.version | |
| best_oa_location.raw_type | dataset |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | https://doi.org/10.6084/m9.figshare.14039321 |
| primary_location.id | doi:10.6084/m9.figshare.14039321 |
| primary_location.is_oa | True |
| primary_location.source | |
| primary_location.license | cc-by |
| primary_location.pdf_url | |
| primary_location.version | |
| primary_location.raw_type | dataset |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | https://doi.org/10.6084/m9.figshare.14039321 |
| publication_date | 2021-01-01 |
| publication_year | 2021 |
| referenced_works_count | 0 |
| abstract_inverted_index.6 | 65 |
| abstract_inverted_index.9 | 60 |
| abstract_inverted_index.a | 110, 144, 183, 195, 211 |
| abstract_inverted_index.CS | 181 |
| abstract_inverted_index.In | 35, 151, 210 |
| abstract_inverted_index.We | 18, 74, 128 |
| abstract_inverted_index.as | 204 |
| abstract_inverted_index.at | 219 |
| abstract_inverted_index.by | 206 |
| abstract_inverted_index.if | 240 |
| abstract_inverted_index.in | 140, 194 |
| abstract_inverted_index.is | 6, 49 |
| abstract_inverted_index.of | 39, 43, 82, 135, 148, 175, 180, 214, 232 |
| abstract_inverted_index.on | 9 |
| abstract_inverted_index.or | 15, 253 |
| abstract_inverted_index.to | 79, 104, 109, 123, 182 |
| abstract_inverted_index.we | 155, 221 |
| abstract_inverted_index.105 | 141 |
| abstract_inverted_index.7.7 | 149 |
| abstract_inverted_index.CD, | 176, 224 |
| abstract_inverted_index.CS, | 225 |
| abstract_inverted_index.Cox | 76, 153 |
| abstract_inverted_index.The | 56, 85, 132 |
| abstract_inverted_index.and | 25, 28, 64, 96, 114, 164, 178, 226, 244 |
| abstract_inverted_index.are | 59 |
| abstract_inverted_index.fit | 75, 198 |
| abstract_inverted_index.for | 249 |
| abstract_inverted_index.the | 20, 40, 46, 50, 70, 80, 106, 124, 152, 230 |
| abstract_inverted_index.was | 138 |
| abstract_inverted_index.IL-6 | 227 |
| abstract_inverted_index.age, | 90 |
| abstract_inverted_index.from | 69 |
| abstract_inverted_index.have | 247 |
| abstract_inverted_index.mean | 145 |
| abstract_inverted_index.risk | 4, 191, 201 |
| abstract_inverted_index.seen | 139 |
| abstract_inverted_index.than | 13, 199 |
| abstract_inverted_index.that | 118, 157, 186, 223 |
| abstract_inverted_index.this | 36 |
| abstract_inverted_index.time | 147 |
| abstract_inverted_index.were | 102, 168 |
| abstract_inverted_index.when | 121 |
| abstract_inverted_index.with | 112, 143, 170 |
| abstract_inverted_index.(CD), | 160 |
| abstract_inverted_index.(CS), | 163 |
| abstract_inverted_index.5,918 | 130 |
| abstract_inverted_index.IL-6, | 177 |
| abstract_inverted_index.Study | 42 |
| abstract_inverted_index.added | 122 |
| abstract_inverted_index.alone | 203 |
| abstract_inverted_index.based | 8 |
| abstract_inverted_index.basic | 242 |
| abstract_inverted_index.blood | 98 |
| abstract_inverted_index.could | 238 |
| abstract_inverted_index.found | 156, 222 |
| abstract_inverted_index.model | 87, 108, 111, 185, 197 |
| abstract_inverted_index.risk. | 33 |
| abstract_inverted_index.serum | 66, 165, 245 |
| abstract_inverted_index.study | 72 |
| abstract_inverted_index.these | 241 |
| abstract_inverted_index.total | 93 |
| abstract_inverted_index.trial | 255 |
| abstract_inverted_index.(IL-6) | 167 |
| abstract_inverted_index.Adding | 173 |
| abstract_inverted_index.Future | 236 |
| abstract_inverted_index.better | 196 |
| abstract_inverted_index.cohort | 213 |
| abstract_inverted_index.during | 54 |
| abstract_inverted_index.helped | 228 |
| abstract_inverted_index.model. | 126 |
| abstract_inverted_index.models | 78 |
| abstract_inverted_index.rather | 12 |
| abstract_inverted_index.stroke | 3, 32, 53, 137 |
| abstract_inverted_index.visit. | 73 |
| abstract_inverted_index.years. | 150 |
| abstract_inverted_index.(MESA), | 45 |
| abstract_inverted_index.Current | 1 |
| abstract_inverted_index.between | 22 |
| abstract_inverted_index.carotid | 61, 158, 161 |
| abstract_inverted_index.compare | 105 |
| abstract_inverted_index.disease | 218 |
| abstract_inverted_index.efforts | 252 |
| abstract_inverted_index.factors | 192, 202 |
| abstract_inverted_index.imaging | 14 |
| abstract_inverted_index.models, | 154 |
| abstract_inverted_index.outcome | 48, 81, 134 |
| abstract_inverted_index.patient | 89 |
| abstract_inverted_index.predict | 229 |
| abstract_inverted_index.primary | 30, 47, 133, 233, 250 |
| abstract_inverted_index.stroke. | 84, 172, 235 |
| abstract_inverted_index.without | 216 |
| abstract_inverted_index.analysis | 38 |
| abstract_inverted_index.assessed | 103 |
| abstract_inverted_index.baseline | 23, 71, 86, 107, 125, 184 |
| abstract_inverted_index.clinical | 10, 189, 254 |
| abstract_inverted_index.evaluate | 239 |
| abstract_inverted_index.examined | 19 |
| abstract_inverted_index.factors, | 11 |
| abstract_inverted_index.incident | 51, 171 |
| abstract_inverted_index.included | 88, 129, 187 |
| abstract_inverted_index.ischemic | 2, 31, 52, 83, 136, 234 |
| abstract_inverted_index.markers. | 17 |
| abstract_inverted_index.patients | 142, 215 |
| abstract_inverted_index.remained | 119 |
| abstract_inverted_index.research | 237 |
| abstract_inverted_index.resulted | 193 |
| abstract_inverted_index.smoking, | 95 |
| abstract_inverted_index.stenosis | 162 |
| abstract_inverted_index.systolic | 97 |
| abstract_inverted_index.tertiles | 174 |
| abstract_inverted_index.vascular | 190 |
| abstract_inverted_index.baseline, | 220 |
| abstract_inverted_index.criteria. | 257 |
| abstract_inverted_index.diabetes, | 92 |
| abstract_inverted_index.follow-up | 146 |
| abstract_inverted_index.inclusion | 256 |
| abstract_inverted_index.indicated | 205 |
| abstract_inverted_index.predictor | 57, 116 |
| abstract_inverted_index.pressure. | 99 |
| abstract_inverted_index.primarily | 7 |
| abstract_inverted_index.secondary | 37 |
| abstract_inverted_index.variables | 58, 117 |
| abstract_inverted_index.associated | 169 |
| abstract_inverted_index.categories | 179 |
| abstract_inverted_index.follow-up. | 55 |
| abstract_inverted_index.laboratory | 16 |
| abstract_inverted_index.occurrence | 231 |
| abstract_inverted_index.prediction | 5 |
| abstract_inverted_index.prevention | 251 |
| abstract_inverted_index.regression | 77 |
| abstract_inverted_index.statistics | 101 |
| abstract_inverted_index.subsequent | 29 |
| abstract_inverted_index.ultrasound | 24, 113, 243 |
| abstract_inverted_index.multiethnic | 212 |
| abstract_inverted_index.significant | 120 |
| abstract_inverted_index.statistics. | 208 |
| abstract_inverted_index.traditional | 188, 200 |
| abstract_inverted_index.Multi-Ethnic | 41 |
| abstract_inverted_index.cholesterol, | 94 |
| abstract_inverted_index.implications | 248 |
| abstract_inverted_index.inflammation | 26, 67, 115 |
| abstract_inverted_index.measurements | 27, 63, 68, 246 |
| abstract_inverted_index.relationship | 21 |
| abstract_inverted_index.hypertension, | 91 |
| abstract_inverted_index.interleukin-6 | 166 |
| abstract_inverted_index.participants. | 131 |
| abstract_inverted_index.distensibility | 159 |
| abstract_inverted_index.Atherosclerosis | 44 |
| abstract_inverted_index.Goodness-of-fit | 100 |
| abstract_inverted_index.cerebrovascular | 217 |
| abstract_inverted_index.goodness-of-fit | 207 |
| abstract_inverted_index.ultrasound-derived | 62 |
| abstract_inverted_index.<b><i>Methods:</i></b> | 34 |
| abstract_inverted_index.<b><i>Results:</i></b> | 127 |
| abstract_inverted_index.<b><i>Conclusions:</i></b> | 209 |
| abstract_inverted_index.<b><i>Introduction:</i></b> | 0 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 8 |
| citation_normalized_percentile |