Supplementary table S2 from Interobserver Agreement in Describing the Ultrasound Appearance of Adnexal Masses and in Calculating the Risk of Malignancy Using Logistic Regression Models Article Swipe
P. Sladkevicius
,
L. Valentin
·
YOU?
·
· 2023
· Open Access
·
· DOI: https://doi.org/10.1158/1078-0432.22454742.v1
YOU?
·
· 2023
· Open Access
·
· DOI: https://doi.org/10.1158/1078-0432.22454742.v1
Supplementary table S2. It describes which variables describing the adnexal masses differed between two observes when estimated risk was >25 percentage units using logistic regression model 1 (LR1)
Related Topics
Concepts
Metadata
- Type
- supplementary-materials
- Language
- en
- Landing Page
- https://doi.org/10.1158/1078-0432.22454742.v1
- OA Status
- gold
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4361909874
All OpenAlex metadata
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4361909874Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1158/1078-0432.22454742.v1Digital Object Identifier
- Title
-
Supplementary table S2 from Interobserver Agreement in Describing the Ultrasound Appearance of Adnexal Masses and in Calculating the Risk of Malignancy Using Logistic Regression ModelsWork title
- Type
-
supplementary-materialsOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2023Year of publication
- Publication date
-
2023-03-31Full publication date if available
- Authors
-
P. Sladkevicius, L. ValentinList of authors in order
- Landing page
-
https://doi.org/10.1158/1078-0432.22454742.v1Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.1158/1078-0432.22454742.v1Direct OA link when available
- Concepts
-
Logistic regression, Table (database), Statistics, Ultrasound, Malignancy, Medicine, Mathematics, Nuclear medicine, Radiology, Computer science, Internal medicine, Data miningTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4361909874 |
|---|---|
| doi | https://doi.org/10.1158/1078-0432.22454742.v1 |
| ids.doi | https://doi.org/10.1158/1078-0432.22454742.v1 |
| ids.openalex | https://openalex.org/W4361909874 |
| fwci | 0.0 |
| type | supplementary-materials |
| title | Supplementary table S2 from Interobserver Agreement in Describing the Ultrasound Appearance of Adnexal Masses and in Calculating the Risk of Malignancy Using Logistic Regression Models |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10550 |
| topics[0].field.id | https://openalex.org/fields/27 |
| topics[0].field.display_name | Medicine |
| topics[0].score | 0.7602999806404114 |
| topics[0].domain.id | https://openalex.org/domains/4 |
| topics[0].domain.display_name | Health Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2743 |
| topics[0].subfield.display_name | Reproductive Medicine |
| topics[0].display_name | Ovarian cancer diagnosis and treatment |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C151956035 |
| concepts[0].level | 2 |
| concepts[0].score | 0.8452205657958984 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q1132755 |
| concepts[0].display_name | Logistic regression |
| concepts[1].id | https://openalex.org/C45235069 |
| concepts[1].level | 2 |
| concepts[1].score | 0.5887657999992371 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q278425 |
| concepts[1].display_name | Table (database) |
| concepts[2].id | https://openalex.org/C105795698 |
| concepts[2].level | 1 |
| concepts[2].score | 0.5210415720939636 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q12483 |
| concepts[2].display_name | Statistics |
| concepts[3].id | https://openalex.org/C143753070 |
| concepts[3].level | 2 |
| concepts[3].score | 0.46933451294898987 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q162564 |
| concepts[3].display_name | Ultrasound |
| concepts[4].id | https://openalex.org/C2779399171 |
| concepts[4].level | 2 |
| concepts[4].score | 0.41656509041786194 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q1483951 |
| concepts[4].display_name | Malignancy |
| concepts[5].id | https://openalex.org/C71924100 |
| concepts[5].level | 0 |
| concepts[5].score | 0.3771713972091675 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q11190 |
| concepts[5].display_name | Medicine |
| concepts[6].id | https://openalex.org/C33923547 |
| concepts[6].level | 0 |
| concepts[6].score | 0.3497765064239502 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[6].display_name | Mathematics |
| concepts[7].id | https://openalex.org/C2989005 |
| concepts[7].level | 1 |
| concepts[7].score | 0.32731378078460693 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q214963 |
| concepts[7].display_name | Nuclear medicine |
| concepts[8].id | https://openalex.org/C126838900 |
| concepts[8].level | 1 |
| concepts[8].score | 0.25507503747940063 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q77604 |
| concepts[8].display_name | Radiology |
| concepts[9].id | https://openalex.org/C41008148 |
| concepts[9].level | 0 |
| concepts[9].score | 0.2059744894504547 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[9].display_name | Computer science |
| concepts[10].id | https://openalex.org/C126322002 |
| concepts[10].level | 1 |
| concepts[10].score | 0.18332701921463013 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q11180 |
| concepts[10].display_name | Internal medicine |
| concepts[11].id | https://openalex.org/C124101348 |
| concepts[11].level | 1 |
| concepts[11].score | 0.090192049741745 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q172491 |
| concepts[11].display_name | Data mining |
| keywords[0].id | https://openalex.org/keywords/logistic-regression |
| keywords[0].score | 0.8452205657958984 |
| keywords[0].display_name | Logistic regression |
| keywords[1].id | https://openalex.org/keywords/table |
| keywords[1].score | 0.5887657999992371 |
| keywords[1].display_name | Table (database) |
| keywords[2].id | https://openalex.org/keywords/statistics |
| keywords[2].score | 0.5210415720939636 |
| keywords[2].display_name | Statistics |
| keywords[3].id | https://openalex.org/keywords/ultrasound |
| keywords[3].score | 0.46933451294898987 |
| keywords[3].display_name | Ultrasound |
| keywords[4].id | https://openalex.org/keywords/malignancy |
| keywords[4].score | 0.41656509041786194 |
| keywords[4].display_name | Malignancy |
| keywords[5].id | https://openalex.org/keywords/medicine |
| keywords[5].score | 0.3771713972091675 |
| keywords[5].display_name | Medicine |
| keywords[6].id | https://openalex.org/keywords/mathematics |
| keywords[6].score | 0.3497765064239502 |
| keywords[6].display_name | Mathematics |
| keywords[7].id | https://openalex.org/keywords/nuclear-medicine |
| keywords[7].score | 0.32731378078460693 |
| keywords[7].display_name | Nuclear medicine |
| keywords[8].id | https://openalex.org/keywords/radiology |
| keywords[8].score | 0.25507503747940063 |
| keywords[8].display_name | Radiology |
| keywords[9].id | https://openalex.org/keywords/computer-science |
| keywords[9].score | 0.2059744894504547 |
| keywords[9].display_name | Computer science |
| keywords[10].id | https://openalex.org/keywords/internal-medicine |
| keywords[10].score | 0.18332701921463013 |
| keywords[10].display_name | Internal medicine |
| keywords[11].id | https://openalex.org/keywords/data-mining |
| keywords[11].score | 0.090192049741745 |
| keywords[11].display_name | Data mining |
| language | en |
| locations[0].id | doi:10.1158/1078-0432.22454742.v1 |
| locations[0].is_oa | True |
| locations[0].source | |
| locations[0].license | cc-by |
| locations[0].pdf_url | |
| locations[0].version | acceptedVersion |
| locations[0].raw_type | posted-content |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | https://doi.org/10.1158/1078-0432.22454742.v1 |
| locations[1].id | pmh:oai:figshare.com:article/22454742 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400572 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | OPAL (Open@LaTrobe) (La Trobe University) |
| locations[1].source.host_organization | https://openalex.org/I196829312 |
| locations[1].source.host_organization_name | La Trobe University |
| locations[1].source.host_organization_lineage | https://openalex.org/I196829312 |
| locations[1].license | cc-by |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | Text |
| locations[1].license_id | https://openalex.org/licenses/cc-by |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://figshare.com/articles/journal_contribution/Supplementary_table_S2_from_Interobserver_Agreement_in_Describing_the_Ultrasound_Appearance_of_Adnexal_Masses_and_in_Calculating_the_Risk_of_Malignancy_Using_Logistic_Regression_Models/22454742 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5063315903 |
| authorships[0].author.orcid | https://orcid.org/0000-0001-9563-8135 |
| authorships[0].author.display_name | P. Sladkevicius |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Povilas Sladkevicius |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5052561794 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-3830-6414 |
| authorships[1].author.display_name | L. Valentin |
| authorships[1].author_position | last |
| authorships[1].raw_author_name | Lil Valentin |
| authorships[1].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.1158/1078-0432.22454742.v1 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Supplementary table S2 from Interobserver Agreement in Describing the Ultrasound Appearance of Adnexal Masses and in Calculating the Risk of Malignancy Using Logistic Regression Models |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10550 |
| primary_topic.field.id | https://openalex.org/fields/27 |
| primary_topic.field.display_name | Medicine |
| primary_topic.score | 0.7602999806404114 |
| primary_topic.domain.id | https://openalex.org/domains/4 |
| primary_topic.domain.display_name | Health Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2743 |
| primary_topic.subfield.display_name | Reproductive Medicine |
| primary_topic.display_name | Ovarian cancer diagnosis and treatment |
| related_works | https://openalex.org/W2092561569, https://openalex.org/W2377100155, https://openalex.org/W2948670949, https://openalex.org/W4288047943, https://openalex.org/W2793887421, https://openalex.org/W3153228984, https://openalex.org/W4389671191, https://openalex.org/W2351153092, https://openalex.org/W4247453431, https://openalex.org/W4312779314 |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | doi:10.1158/1078-0432.22454742.v1 |
| best_oa_location.is_oa | True |
| best_oa_location.source | |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | |
| best_oa_location.version | acceptedVersion |
| best_oa_location.raw_type | posted-content |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | https://doi.org/10.1158/1078-0432.22454742.v1 |
| primary_location.id | doi:10.1158/1078-0432.22454742.v1 |
| primary_location.is_oa | True |
| primary_location.source | |
| primary_location.license | cc-by |
| primary_location.pdf_url | |
| primary_location.version | acceptedVersion |
| primary_location.raw_type | posted-content |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | https://doi.org/10.1158/1078-0432.22454742.v1 |
| publication_date | 2023-03-31 |
| publication_year | 2023 |
| referenced_works_count | 0 |
| abstract_inverted_index.1 | 26 |
| abstract_inverted_index.It | 3 |
| abstract_inverted_index.S2. | 2 |
| abstract_inverted_index.the | 8 |
| abstract_inverted_index.two | 13 |
| abstract_inverted_index.was | 18 |
| abstract_inverted_index.risk | 17 |
| abstract_inverted_index.when | 15 |
| abstract_inverted_index.model | 25 |
| abstract_inverted_index.table | 1 |
| abstract_inverted_index.units | 21 |
| abstract_inverted_index.using | 22 |
| abstract_inverted_index.which | 5 |
| abstract_inverted_index.>25 | 19 |
| abstract_inverted_index.masses | 10 |
| abstract_inverted_index.adnexal | 9 |
| abstract_inverted_index.between | 12 |
| abstract_inverted_index.differed | 11 |
| abstract_inverted_index.logistic | 23 |
| abstract_inverted_index.observes | 14 |
| abstract_inverted_index.describes | 4 |
| abstract_inverted_index.estimated | 16 |
| abstract_inverted_index.variables | 6 |
| abstract_inverted_index.describing | 7 |
| abstract_inverted_index.percentage | 20 |
| abstract_inverted_index.regression | 24 |
| abstract_inverted_index.(LR1)</p> | 27 |
| abstract_inverted_index.<p>Supplementary | 0 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 2 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/3 |
| sustainable_development_goals[0].score | 0.5799999833106995 |
| sustainable_development_goals[0].display_name | Good health and well-being |
| citation_normalized_percentile.value | 0.0882605 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |