Supporting data for manuscript describing Slice and Dice method to measure NMR relaxation with nested experiments Article Swipe
YOU?
·
· 2022
· Open Access
·
· DOI: https://doi.org/10.5281/zenodo.7110736
This is a supporting dataset for the manuscript "Slice and Dice: Nested Spin-lattice Relaxation Measurements" by W. Trent Franks, Jacqueline Tognetti and Józef R. Lewandowski. NMR_data.zip : Raw NMR data in the Bruker format for the experiments presented in the manuscript. The file expands to a directory called "Raw NMR Data" that contains: ReadMe_NMR_data.txt - describing the datasets included in the file. Record 1: 13C\(^\alpha\) individual experiment. Pulse program name: hRCH_CT1 Record 2: 13C' individual experiment. Pulse program name: hCOcaH_SP_T1 Record 3: 15N individual experiment. Pulse program name: hRNH_NT1b Record 10: 13C\(^\alpha\) + 13C' + 15N Slice & Dice experiment. Pulse program name: hR[COca,Ca,N]Ha_T10818 corresponding to the final sequence: hR[N,COca,Ca]HR_T1 Pulse_program.zip: The pulse program and include file for the Slice and Dice experiment described in the manuscript. The pulse program in Bruker format (war.hR[COca,Ca,N]H_T1 - this is a text file that can be opened with any text editor) was tested on a Bruker Avance III HD console. Both the pulse program file, war.hR[COca,Ca,N]H_T1, and include file, HCN_defs.incl, need to be placed in the pulse program directory (/opt/topspinXX/exp/stan/nmr/lists/pp/user where XX is replaced with the version of Topspin). The file expands to a directory "Pulse_program_incl" that contains: war.hR[COca,Ca,N]H_T1 - pulse program HCN_defs.incl - include file ReadMe_SliceDice_pp.txt - details on how to set up the experiment. HowToProcessSliceAndDice.pdf : Instructions on how to process Slice and Dice experiment in Topspin. MultiR1list.zip: A program written in Python 3 required to calculate delay lists for the nested experiment to be included in the pulse program. The file expands to a directory MultiT1list directory that contains: MultiT1list.py - the program ReadMe_MultiT1list.txt - instructions on how to use the program SNDProcguide.py.zip: A program written in Python 2 (SNDProcguideV2.py), which generates macro for processing and sorting 2D planes in Topspin. The script also provides some tips on setting parameters for different 2Ds and sorted lists of relaxation delays. Example output of the script is also included. The parameters in the script are set for the supplied example data. HowToProcessSliceAndDice.mp4 - a video working through an example of processing Slice and Dice data.
Related Topics
- Type
- dataset
- Language
- en
- Landing Page
- https://doi.org/10.5281/zenodo.7110736
- OA Status
- green
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4393692393
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4393692393Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.5281/zenodo.7110736Digital Object Identifier
- Title
-
Supporting data for manuscript describing Slice and Dice method to measure NMR relaxation with nested experimentsWork title
- Type
-
datasetOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2022Year of publication
- Publication date
-
2022-02-03Full publication date if available
- Authors
-
Józef R. Lewandowski, Jacqueline Tognetti, W. Trent FranksList of authors in order
- Landing page
-
https://doi.org/10.5281/zenodo.7110736Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.5281/zenodo.7110736Direct OA link when available
- Concepts
-
Dice, Measure (data warehouse), Nested set model, Computer science, Data mining, Mathematics, Statistics, Relational databaseTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4393692393 |
|---|---|
| doi | https://doi.org/10.5281/zenodo.7110736 |
| ids.doi | https://doi.org/10.5281/zenodo.7110736 |
| ids.openalex | https://openalex.org/W4393692393 |
| fwci | |
| type | dataset |
| title | Supporting data for manuscript describing Slice and Dice method to measure NMR relaxation with nested experiments |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T12603 |
| topics[0].field.id | https://openalex.org/fields/31 |
| topics[0].field.display_name | Physics and Astronomy |
| topics[0].score | 0.9911999702453613 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/3106 |
| topics[0].subfield.display_name | Nuclear and High Energy Physics |
| topics[0].display_name | NMR spectroscopy and applications |
| topics[1].id | https://openalex.org/T11809 |
| topics[1].field.id | https://openalex.org/fields/16 |
| topics[1].field.display_name | Chemistry |
| topics[1].score | 0.9803000092506409 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1607 |
| topics[1].subfield.display_name | Spectroscopy |
| topics[1].display_name | Advanced NMR Techniques and Applications |
| topics[2].id | https://openalex.org/T10378 |
| topics[2].field.id | https://openalex.org/fields/27 |
| topics[2].field.display_name | Medicine |
| topics[2].score | 0.941100001335144 |
| topics[2].domain.id | https://openalex.org/domains/4 |
| topics[2].domain.display_name | Health Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2741 |
| topics[2].subfield.display_name | Radiology, Nuclear Medicine and Imaging |
| topics[2].display_name | Advanced MRI Techniques and Applications |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C22029948 |
| concepts[0].level | 2 |
| concepts[0].score | 0.8777952194213867 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q45089 |
| concepts[0].display_name | Dice |
| concepts[1].id | https://openalex.org/C2780009758 |
| concepts[1].level | 2 |
| concepts[1].score | 0.7092766165733337 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q6804172 |
| concepts[1].display_name | Measure (data warehouse) |
| concepts[2].id | https://openalex.org/C103000020 |
| concepts[2].level | 3 |
| concepts[2].score | 0.4532613754272461 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q1978426 |
| concepts[2].display_name | Nested set model |
| concepts[3].id | https://openalex.org/C41008148 |
| concepts[3].level | 0 |
| concepts[3].score | 0.4274205267429352 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[3].display_name | Computer science |
| concepts[4].id | https://openalex.org/C124101348 |
| concepts[4].level | 1 |
| concepts[4].score | 0.2994692027568817 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q172491 |
| concepts[4].display_name | Data mining |
| concepts[5].id | https://openalex.org/C33923547 |
| concepts[5].level | 0 |
| concepts[5].score | 0.21979734301567078 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[5].display_name | Mathematics |
| concepts[6].id | https://openalex.org/C105795698 |
| concepts[6].level | 1 |
| concepts[6].score | 0.19981393218040466 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q12483 |
| concepts[6].display_name | Statistics |
| concepts[7].id | https://openalex.org/C5655090 |
| concepts[7].level | 2 |
| concepts[7].score | 0.0 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q192588 |
| concepts[7].display_name | Relational database |
| keywords[0].id | https://openalex.org/keywords/dice |
| keywords[0].score | 0.8777952194213867 |
| keywords[0].display_name | Dice |
| keywords[1].id | https://openalex.org/keywords/measure |
| keywords[1].score | 0.7092766165733337 |
| keywords[1].display_name | Measure (data warehouse) |
| keywords[2].id | https://openalex.org/keywords/nested-set-model |
| keywords[2].score | 0.4532613754272461 |
| keywords[2].display_name | Nested set model |
| keywords[3].id | https://openalex.org/keywords/computer-science |
| keywords[3].score | 0.4274205267429352 |
| keywords[3].display_name | Computer science |
| keywords[4].id | https://openalex.org/keywords/data-mining |
| keywords[4].score | 0.2994692027568817 |
| keywords[4].display_name | Data mining |
| keywords[5].id | https://openalex.org/keywords/mathematics |
| keywords[5].score | 0.21979734301567078 |
| keywords[5].display_name | Mathematics |
| keywords[6].id | https://openalex.org/keywords/statistics |
| keywords[6].score | 0.19981393218040466 |
| keywords[6].display_name | Statistics |
| language | en |
| locations[0].id | doi:10.5281/zenodo.7110736 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400562 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | Zenodo (CERN European Organization for Nuclear Research) |
| locations[0].source.host_organization | https://openalex.org/I67311998 |
| locations[0].source.host_organization_name | European Organization for Nuclear Research |
| locations[0].source.host_organization_lineage | https://openalex.org/I67311998 |
| locations[0].license | |
| locations[0].pdf_url | |
| locations[0].version | |
| locations[0].raw_type | dataset |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | https://doi.org/10.5281/zenodo.7110736 |
| indexed_in | datacite |
| authorships[0].author.id | https://openalex.org/A5009331986 |
| authorships[0].author.orcid | https://orcid.org/0000-0001-6525-7083 |
| authorships[0].author.display_name | Józef R. Lewandowski |
| authorships[0].countries | GB |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I39555362 |
| authorships[0].affiliations[0].raw_affiliation_string | University of Warwick |
| authorships[0].institutions[0].id | https://openalex.org/I39555362 |
| authorships[0].institutions[0].ror | https://ror.org/01a77tt86 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I39555362 |
| authorships[0].institutions[0].country_code | GB |
| authorships[0].institutions[0].display_name | University of Warwick |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Józef Romuald Lewandowski |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | University of Warwick |
| authorships[1].author.id | https://openalex.org/A5047294363 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-7531-8756 |
| authorships[1].author.display_name | Jacqueline Tognetti |
| authorships[1].countries | GB |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I39555362 |
| authorships[1].affiliations[0].raw_affiliation_string | University of Warwick |
| authorships[1].institutions[0].id | https://openalex.org/I39555362 |
| authorships[1].institutions[0].ror | https://ror.org/01a77tt86 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I39555362 |
| authorships[1].institutions[0].country_code | GB |
| authorships[1].institutions[0].display_name | University of Warwick |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Jacqueline Tognetti |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | University of Warwick |
| authorships[2].author.id | https://openalex.org/A5076348628 |
| authorships[2].author.orcid | https://orcid.org/0000-0003-4111-8868 |
| authorships[2].author.display_name | W. Trent Franks |
| authorships[2].countries | GB |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I39555362 |
| authorships[2].affiliations[0].raw_affiliation_string | University of Warwick |
| authorships[2].institutions[0].id | https://openalex.org/I39555362 |
| authorships[2].institutions[0].ror | https://ror.org/01a77tt86 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I39555362 |
| authorships[2].institutions[0].country_code | GB |
| authorships[2].institutions[0].display_name | University of Warwick |
| authorships[2].author_position | last |
| authorships[2].raw_author_name | William Trent Franks |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | University of Warwick |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.5281/zenodo.7110736 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Supporting data for manuscript describing Slice and Dice method to measure NMR relaxation with nested experiments |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T12603 |
| primary_topic.field.id | https://openalex.org/fields/31 |
| primary_topic.field.display_name | Physics and Astronomy |
| primary_topic.score | 0.9911999702453613 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/3106 |
| primary_topic.subfield.display_name | Nuclear and High Energy Physics |
| primary_topic.display_name | NMR spectroscopy and applications |
| related_works | https://openalex.org/W2748952813, https://openalex.org/W3104750253, https://openalex.org/W3021239166, https://openalex.org/W2586273397, https://openalex.org/W4366341510, https://openalex.org/W2390936256, https://openalex.org/W2483429559, https://openalex.org/W2016385589, https://openalex.org/W2009559548, https://openalex.org/W2906397153 |
| cited_by_count | 0 |
| locations_count | 1 |
| best_oa_location.id | doi:10.5281/zenodo.7110736 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400562 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | Zenodo (CERN European Organization for Nuclear Research) |
| best_oa_location.source.host_organization | https://openalex.org/I67311998 |
| best_oa_location.source.host_organization_name | European Organization for Nuclear Research |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I67311998 |
| best_oa_location.license | |
| best_oa_location.pdf_url | |
| best_oa_location.version | |
| best_oa_location.raw_type | dataset |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | https://doi.org/10.5281/zenodo.7110736 |
| primary_location.id | doi:10.5281/zenodo.7110736 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400562 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | Zenodo (CERN European Organization for Nuclear Research) |
| primary_location.source.host_organization | https://openalex.org/I67311998 |
| primary_location.source.host_organization_name | European Organization for Nuclear Research |
| primary_location.source.host_organization_lineage | https://openalex.org/I67311998 |
| primary_location.license | |
| primary_location.pdf_url | |
| primary_location.version | |
| primary_location.raw_type | dataset |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | https://doi.org/10.5281/zenodo.7110736 |
| publication_date | 2022-02-03 |
| publication_year | 2022 |
| referenced_works_count | 0 |
| abstract_inverted_index.+ | 92, 94 |
| abstract_inverted_index.- | 54, 134, 196, 200, 204, 260, 264, 330 |
| abstract_inverted_index.2 | 278 |
| abstract_inverted_index.3 | 232 |
| abstract_inverted_index.: | 26, 214 |
| abstract_inverted_index.A | 273 |
| abstract_inverted_index.a | 2, 45, 137, 151, 190, 253, 331 |
| abstract_inverted_index.1: | 63 |
| abstract_inverted_index.2: | 72 |
| abstract_inverted_index.2D | 287 |
| abstract_inverted_index.3: | 81 |
| abstract_inverted_index.HD | 155 |
| abstract_inverted_index.R. | 23 |
| abstract_inverted_index.W. | 16 |
| abstract_inverted_index.XX | 178 |
| abstract_inverted_index.an | 335 |
| abstract_inverted_index.be | 142, 169, 243 |
| abstract_inverted_index.by | 15 |
| abstract_inverted_index.in | 30, 38, 59, 124, 130, 171, 224, 230, 245, 276, 289, 319 |
| abstract_inverted_index.is | 1, 136, 179, 314 |
| abstract_inverted_index.of | 184, 306, 311, 337 |
| abstract_inverted_index.on | 150, 206, 216, 266, 297 |
| abstract_inverted_index.to | 44, 105, 168, 189, 208, 218, 234, 242, 252, 268 |
| abstract_inverted_index.up | 210 |
| abstract_inverted_index.10: | 90 |
| abstract_inverted_index.2Ds | 302 |
| abstract_inverted_index.III | 154 |
| abstract_inverted_index.NMR | 28, 49 |
| abstract_inverted_index.The | 41, 111, 127, 186, 249, 291, 317 |
| abstract_inverted_index.and | 9, 21, 114, 120, 163, 221, 285, 303, 340 |
| abstract_inverted_index.any | 145 |
| abstract_inverted_index.are | 322 |
| abstract_inverted_index.can | 141 |
| abstract_inverted_index.for | 5, 34, 117, 238, 283, 300, 324 |
| abstract_inverted_index.how | 207, 217, 267 |
| abstract_inverted_index.set | 209, 323 |
| abstract_inverted_index.the | 6, 31, 35, 39, 56, 60, 106, 118, 125, 158, 172, 182, 211, 239, 246, 261, 270, 312, 320, 325 |
| abstract_inverted_index.use | 269 |
| abstract_inverted_index.was | 148 |
| abstract_inverted_index."Raw | 48 |
| abstract_inverted_index.Both | 157 |
| abstract_inverted_index.Dice | 98, 121, 222, 341 |
| abstract_inverted_index.This | 0 |
| abstract_inverted_index.also | 293, 315 |
| abstract_inverted_index.data | 29 |
| abstract_inverted_index.file | 42, 116, 139, 187, 202, 250 |
| abstract_inverted_index.need | 167 |
| abstract_inverted_index.some | 295 |
| abstract_inverted_index.text | 138, 146 |
| abstract_inverted_index.that | 51, 140, 193, 257 |
| abstract_inverted_index.this | 135 |
| abstract_inverted_index.tips | 296 |
| abstract_inverted_index.with | 144, 181 |
| abstract_inverted_index.& | 97 |
| abstract_inverted_index.Data" | 50 |
| abstract_inverted_index.Dice: | 10 |
| abstract_inverted_index.Pulse | 67, 76, 85, 100 |
| abstract_inverted_index.Slice | 96, 119, 220, 339 |
| abstract_inverted_index.Trent | 17 |
| abstract_inverted_index.data. | 328, 342 |
| abstract_inverted_index.delay | 236 |
| abstract_inverted_index.file, | 161, 165 |
| abstract_inverted_index.file. | 61 |
| abstract_inverted_index.final | 107 |
| abstract_inverted_index.lists | 237, 305 |
| abstract_inverted_index.macro | 282 |
| abstract_inverted_index.name: | 69, 78, 87, 102 |
| abstract_inverted_index.pulse | 112, 128, 159, 173, 197, 247 |
| abstract_inverted_index.video | 332 |
| abstract_inverted_index.where | 177 |
| abstract_inverted_index.which | 280 |
| abstract_inverted_index."Slice | 8 |
| abstract_inverted_index.Avance | 153 |
| abstract_inverted_index.Bruker | 32, 131, 152 |
| abstract_inverted_index.Józef | 22 |
| abstract_inverted_index.Nested | 11 |
| abstract_inverted_index.Python | 231, 277 |
| abstract_inverted_index.Record | 62, 71, 80, 89 |
| abstract_inverted_index.called | 47 |
| abstract_inverted_index.format | 33, 132 |
| abstract_inverted_index.nested | 240 |
| abstract_inverted_index.opened | 143 |
| abstract_inverted_index.output | 310 |
| abstract_inverted_index.placed | 170 |
| abstract_inverted_index.planes | 288 |
| abstract_inverted_index.script | 292, 313, 321 |
| abstract_inverted_index.sorted | 304 |
| abstract_inverted_index.tested | 149 |
| abstract_inverted_index.Example | 309 |
| abstract_inverted_index.Franks, | 18 |
| abstract_inverted_index.dataset | 4 |
| abstract_inverted_index.delays. | 308 |
| abstract_inverted_index.details | 205 |
| abstract_inverted_index.editor) | 147 |
| abstract_inverted_index.example | 327, 336 |
| abstract_inverted_index.expands | 43, 188, 251 |
| abstract_inverted_index.include | 115, 164, 201 |
| abstract_inverted_index.process | 219 |
| abstract_inverted_index.program | 68, 77, 86, 101, 113, 129, 160, 174, 198, 228, 262, 271, 274 |
| abstract_inverted_index.setting | 298 |
| abstract_inverted_index.sorting | 286 |
| abstract_inverted_index.through | 334 |
| abstract_inverted_index.version | 183 |
| abstract_inverted_index.working | 333 |
| abstract_inverted_index.written | 229, 275 |
| abstract_inverted_index.Tognetti | 20 |
| abstract_inverted_index.Topspin. | 225, 290 |
| abstract_inverted_index.console. | 156 |
| abstract_inverted_index.datasets | 57 |
| abstract_inverted_index.hRCH_CT1 | 70 |
| abstract_inverted_index.included | 58, 244 |
| abstract_inverted_index.program. | 248 |
| abstract_inverted_index.provides | 294 |
| abstract_inverted_index.replaced | 180 |
| abstract_inverted_index.required | 233 |
| abstract_inverted_index.supplied | 326 |
| abstract_inverted_index.Topspin). | 185 |
| abstract_inverted_index.calculate | 235 |
| abstract_inverted_index.contains: | 52, 194, 258 |
| abstract_inverted_index.described | 123 |
| abstract_inverted_index.different | 301 |
| abstract_inverted_index.directory | 46, 175, 191, 254, 256 |
| abstract_inverted_index.generates | 281 |
| abstract_inverted_index.hRNH_NT1b | 88 |
| abstract_inverted_index.included. | 316 |
| abstract_inverted_index.presented | 37 |
| abstract_inverted_index.sequence: | 108 |
| abstract_inverted_index.</strong>A | 227 |
| abstract_inverted_index.Jacqueline | 19 |
| abstract_inverted_index.Relaxation | 13 |
| abstract_inverted_index.describing | 55 |
| abstract_inverted_index.experiment | 122, 223, 241 |
| abstract_inverted_index.individual | 65, 74, 83 |
| abstract_inverted_index.manuscript | 7 |
| abstract_inverted_index.parameters | 299, 318 |
| abstract_inverted_index.processing | 284, 338 |
| abstract_inverted_index.relaxation | 307 |
| abstract_inverted_index.supporting | 3 |
| abstract_inverted_index.MultiT1list | 255 |
| abstract_inverted_index.experiment. | 66, 75, 84, 99, 212 |
| abstract_inverted_index.experiments | 36 |
| abstract_inverted_index.manuscript. | 40, 126 |
| abstract_inverted_index.</strong>Raw | 27 |
| abstract_inverted_index.Instructions | 215 |
| abstract_inverted_index.Lewandowski. | 24 |
| abstract_inverted_index.Spin-lattice | 12 |
| abstract_inverted_index.hCOcaH_SP_T1 | 79 |
| abstract_inverted_index.instructions | 265 |
| abstract_inverted_index.HCN_defs.incl | 199 |
| abstract_inverted_index.Measurements" | 14 |
| abstract_inverted_index.corresponding | 104 |
| abstract_inverted_index.<sup>15</sup>N | 82, 95 |
| abstract_inverted_index.HCN_defs.incl, | 166 |
| abstract_inverted_index.MultiT1list.py | 259 |
| abstract_inverted_index.<sup>13</sup>C' | 73, 93 |
| abstract_inverted_index.hR[N,COca,Ca]HR_T1 | 109 |
| abstract_inverted_index.ReadMe_NMR_data.txt | 53 |
| abstract_inverted_index."Pulse_program_incl" | 192 |
| abstract_inverted_index.(SNDProcguideV2.py), | 279 |
| abstract_inverted_index.<strong>NMR_data.zip | 25 |
| abstract_inverted_index.war.hR[COca,Ca,N]H_T1 | 195 |
| abstract_inverted_index.(war.hR[COca,Ca,N]H_T1 | 133 |
| abstract_inverted_index.ReadMe_MultiT1list.txt | 263 |
| abstract_inverted_index.hR[COca,Ca,N]Ha_T10818 | 103 |
| abstract_inverted_index.war.hR[COca,Ca,N]H_T1, | 162 |
| abstract_inverted_index.ReadMe_SliceDice_pp.txt | 203 |
| abstract_inverted_index.<strong>MultiR1list.zip: | 226 |
| abstract_inverted_index.<sup>13</sup>C\(^\alpha\) | 91 |
| abstract_inverted_index.<strong>Pulse_program.zip</strong>: | 110 |
| abstract_inverted_index.<sup>13</sup>C<sup>\(^\alpha\)</sup> | 64 |
| abstract_inverted_index.<strong>SNDProcguide.py.zip</strong>: | 272 |
| abstract_inverted_index.(/opt/topspinXX/exp/stan/nmr/lists/pp/user | 176 |
| abstract_inverted_index.<strong>HowToProcessSliceAndDice.mp4</strong> | 329 |
| abstract_inverted_index.<strong>HowToProcessSliceAndDice.pdf</strong> | 213 |
| cited_by_percentile_year | |
| countries_distinct_count | 1 |
| institutions_distinct_count | 3 |
| citation_normalized_percentile |