Surface defect detection on rolling mill rolls: a transfer learning approach with improved YOLOv5 Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.1007/s42452-025-06920-7
The roller is a crucial tool in the hot-rolled strip steel manufacturing process. Rapid and accurate detection of roll surface defects is essential for enhancing product surface quality, ensuring dimensional precision, and reducing scrap rates. Currently, industrial roll inspection primarily relies on manual visual assessment, which is prone to subjectivity, low accuracy, and inefficiency. To overcome these limitations, this study introduces a defect detection method based on transfer learning and an enhanced YOLOv5 model.Given the lack of publicly available datasets for roll surface defects, a representative dataset was first constructed using defect images collected from a steel production line. To further optimize the detection model, the NEU-DET dataset—containing strip surface defect images—was employed to pre-train the improved YOLOv5 model, refining its parameters. The pre-trained model was then adapted for roll defect detection using transfer learning, where the learned parameters from strip surface defects served as initial weights for training on the roll defect dataset. Experimental results demonstrate that the proposed TR-CNF-YOLOv5 model, integrating transfer learning with an improved YOLOv5 architecture, outperforms existing models. Specifically, it achieves an mAP improvement of approximately 9.8% over the original YOLOv5 and 7.1% over YOLOv7 on the roll surface defect dataset.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1007/s42452-025-06920-7
- https://link.springer.com/content/pdf/10.1007/s42452-025-06920-7.pdf
- OA Status
- diamond
- References
- 31
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4411409987
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4411409987Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1007/s42452-025-06920-7Digital Object Identifier
- Title
-
Surface defect detection on rolling mill rolls: a transfer learning approach with improved YOLOv5Work title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-06-18Full publication date if available
- Authors
-
Yulong Hu, Peng Wen, Shiyi Chen, Jinyun Liu, Xudong Li, Jie Sun, Dianhua ZhangList of authors in order
- Landing page
-
https://doi.org/10.1007/s42452-025-06920-7Publisher landing page
- PDF URL
-
https://link.springer.com/content/pdf/10.1007/s42452-025-06920-7.pdfDirect link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
diamondOpen access status per OpenAlex
- OA URL
-
https://link.springer.com/content/pdf/10.1007/s42452-025-06920-7.pdfDirect OA link when available
- Concepts
-
Transfer of learning, Computer science, Surface (topology), Scrap, Process (computing), Artificial intelligence, Production line, Engineering, Mechanical engineering, Mathematics, Geometry, Operating systemTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- References (count)
-
31Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4411409987 |
|---|---|
| doi | https://doi.org/10.1007/s42452-025-06920-7 |
| ids.doi | https://doi.org/10.1007/s42452-025-06920-7 |
| ids.openalex | https://openalex.org/W4411409987 |
| fwci | 0.0 |
| type | article |
| title | Surface defect detection on rolling mill rolls: a transfer learning approach with improved YOLOv5 |
| awards[0].id | https://openalex.org/G1853549190 |
| awards[0].funder_id | https://openalex.org/F4320321001 |
| awards[0].display_name | |
| awards[0].funder_award_id | U21A20117,52074085 |
| awards[0].funder_display_name | National Natural Science Foundation of China |
| biblio.issue | 7 |
| biblio.volume | 7 |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T12111 |
| topics[0].field.id | https://openalex.org/fields/22 |
| topics[0].field.display_name | Engineering |
| topics[0].score | 0.9980000257492065 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2209 |
| topics[0].subfield.display_name | Industrial and Manufacturing Engineering |
| topics[0].display_name | Industrial Vision Systems and Defect Detection |
| topics[1].id | https://openalex.org/T10834 |
| topics[1].field.id | https://openalex.org/fields/22 |
| topics[1].field.display_name | Engineering |
| topics[1].score | 0.9818000197410583 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2210 |
| topics[1].subfield.display_name | Mechanical Engineering |
| topics[1].display_name | Welding Techniques and Residual Stresses |
| topics[2].id | https://openalex.org/T11301 |
| topics[2].field.id | https://openalex.org/fields/22 |
| topics[2].field.display_name | Engineering |
| topics[2].score | 0.9556000232696533 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2204 |
| topics[2].subfield.display_name | Biomedical Engineering |
| topics[2].display_name | Advanced Surface Polishing Techniques |
| funders[0].id | https://openalex.org/F4320321001 |
| funders[0].ror | https://ror.org/01h0zpd94 |
| funders[0].display_name | National Natural Science Foundation of China |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C150899416 |
| concepts[0].level | 2 |
| concepts[0].score | 0.736478328704834 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q1820378 |
| concepts[0].display_name | Transfer of learning |
| concepts[1].id | https://openalex.org/C41008148 |
| concepts[1].level | 0 |
| concepts[1].score | 0.5551804304122925 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[1].display_name | Computer science |
| concepts[2].id | https://openalex.org/C2776799497 |
| concepts[2].level | 2 |
| concepts[2].score | 0.5301077365875244 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q484298 |
| concepts[2].display_name | Surface (topology) |
| concepts[3].id | https://openalex.org/C192097918 |
| concepts[3].level | 2 |
| concepts[3].score | 0.5233568549156189 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q917714 |
| concepts[3].display_name | Scrap |
| concepts[4].id | https://openalex.org/C98045186 |
| concepts[4].level | 2 |
| concepts[4].score | 0.4925616383552551 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q205663 |
| concepts[4].display_name | Process (computing) |
| concepts[5].id | https://openalex.org/C154945302 |
| concepts[5].level | 1 |
| concepts[5].score | 0.47716277837753296 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[5].display_name | Artificial intelligence |
| concepts[6].id | https://openalex.org/C99862985 |
| concepts[6].level | 2 |
| concepts[6].score | 0.4184838533401489 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q10858068 |
| concepts[6].display_name | Production line |
| concepts[7].id | https://openalex.org/C127413603 |
| concepts[7].level | 0 |
| concepts[7].score | 0.28913193941116333 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q11023 |
| concepts[7].display_name | Engineering |
| concepts[8].id | https://openalex.org/C78519656 |
| concepts[8].level | 1 |
| concepts[8].score | 0.2358313500881195 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q101333 |
| concepts[8].display_name | Mechanical engineering |
| concepts[9].id | https://openalex.org/C33923547 |
| concepts[9].level | 0 |
| concepts[9].score | 0.09549975395202637 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[9].display_name | Mathematics |
| concepts[10].id | https://openalex.org/C2524010 |
| concepts[10].level | 1 |
| concepts[10].score | 0.0 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q8087 |
| concepts[10].display_name | Geometry |
| concepts[11].id | https://openalex.org/C111919701 |
| concepts[11].level | 1 |
| concepts[11].score | 0.0 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q9135 |
| concepts[11].display_name | Operating system |
| keywords[0].id | https://openalex.org/keywords/transfer-of-learning |
| keywords[0].score | 0.736478328704834 |
| keywords[0].display_name | Transfer of learning |
| keywords[1].id | https://openalex.org/keywords/computer-science |
| keywords[1].score | 0.5551804304122925 |
| keywords[1].display_name | Computer science |
| keywords[2].id | https://openalex.org/keywords/surface |
| keywords[2].score | 0.5301077365875244 |
| keywords[2].display_name | Surface (topology) |
| keywords[3].id | https://openalex.org/keywords/scrap |
| keywords[3].score | 0.5233568549156189 |
| keywords[3].display_name | Scrap |
| keywords[4].id | https://openalex.org/keywords/process |
| keywords[4].score | 0.4925616383552551 |
| keywords[4].display_name | Process (computing) |
| keywords[5].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[5].score | 0.47716277837753296 |
| keywords[5].display_name | Artificial intelligence |
| keywords[6].id | https://openalex.org/keywords/production-line |
| keywords[6].score | 0.4184838533401489 |
| keywords[6].display_name | Production line |
| keywords[7].id | https://openalex.org/keywords/engineering |
| keywords[7].score | 0.28913193941116333 |
| keywords[7].display_name | Engineering |
| keywords[8].id | https://openalex.org/keywords/mechanical-engineering |
| keywords[8].score | 0.2358313500881195 |
| keywords[8].display_name | Mechanical engineering |
| keywords[9].id | https://openalex.org/keywords/mathematics |
| keywords[9].score | 0.09549975395202637 |
| keywords[9].display_name | Mathematics |
| language | en |
| locations[0].id | doi:10.1007/s42452-025-06920-7 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S5407042868 |
| locations[0].source.issn | 3004-9261 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 3004-9261 |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | Discover Applied Sciences |
| locations[0].source.host_organization | |
| locations[0].source.host_organization_name | |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://link.springer.com/content/pdf/10.1007/s42452-025-06920-7.pdf |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Discover Applied Sciences |
| locations[0].landing_page_url | https://doi.org/10.1007/s42452-025-06920-7 |
| locations[1].id | pmh:oai:doaj.org/article:0e963bf6efea467f9936215c5c351d97 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306401280 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[1].source.host_organization | |
| locations[1].source.host_organization_name | |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | Discover Applied Sciences, Vol 7, Iss 7, Pp 1-14 (2025) |
| locations[1].landing_page_url | https://doaj.org/article/0e963bf6efea467f9936215c5c351d97 |
| indexed_in | crossref, doaj |
| authorships[0].author.id | https://openalex.org/A5102356065 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Yulong Hu |
| authorships[0].countries | CN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I9224756 |
| authorships[0].affiliations[0].raw_affiliation_string | State Key Laboratory of Digital Steel, Northeastern University, Shenyang, 110819, China |
| authorships[0].institutions[0].id | https://openalex.org/I9224756 |
| authorships[0].institutions[0].ror | https://ror.org/03awzbc87 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I9224756 |
| authorships[0].institutions[0].country_code | CN |
| authorships[0].institutions[0].display_name | Northeastern University |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Yulong Hu |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | State Key Laboratory of Digital Steel, Northeastern University, Shenyang, 110819, China |
| authorships[1].author.id | https://openalex.org/A5019868990 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-9531-770X |
| authorships[1].author.display_name | Peng Wen |
| authorships[1].countries | CN |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I9224756 |
| authorships[1].affiliations[0].raw_affiliation_string | State Key Laboratory of Digital Steel, Northeastern University, Shenyang, 110819, China |
| authorships[1].institutions[0].id | https://openalex.org/I9224756 |
| authorships[1].institutions[0].ror | https://ror.org/03awzbc87 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I9224756 |
| authorships[1].institutions[0].country_code | CN |
| authorships[1].institutions[0].display_name | Northeastern University |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Wen Peng |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | State Key Laboratory of Digital Steel, Northeastern University, Shenyang, 110819, China |
| authorships[2].author.id | https://openalex.org/A5100631623 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-2913-4497 |
| authorships[2].author.display_name | Shiyi Chen |
| authorships[2].countries | CN |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I4210098582 |
| authorships[2].affiliations[0].raw_affiliation_string | Zhongxing Telecom Equipment, Shenzhen, China |
| authorships[2].institutions[0].id | https://openalex.org/I4210098582 |
| authorships[2].institutions[0].ror | https://ror.org/00rjhhq63 |
| authorships[2].institutions[0].type | company |
| authorships[2].institutions[0].lineage | https://openalex.org/I4210098582 |
| authorships[2].institutions[0].country_code | CN |
| authorships[2].institutions[0].display_name | ZTE (China) |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Shiyi Chen |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Zhongxing Telecom Equipment, Shenzhen, China |
| authorships[3].author.id | https://openalex.org/A5091211713 |
| authorships[3].author.orcid | |
| authorships[3].author.display_name | Jinyun Liu |
| authorships[3].countries | CN |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I137506752 |
| authorships[3].affiliations[0].raw_affiliation_string | College of Artificial Intelligence, North China University of Science and Technology, Tangshan, 063210, China |
| authorships[3].institutions[0].id | https://openalex.org/I137506752 |
| authorships[3].institutions[0].ror | https://ror.org/04z4wmb81 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I137506752 |
| authorships[3].institutions[0].country_code | CN |
| authorships[3].institutions[0].display_name | North China University of Science and Technology |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Jinyun Liu |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | College of Artificial Intelligence, North China University of Science and Technology, Tangshan, 063210, China |
| authorships[4].author.id | https://openalex.org/A5100354513 |
| authorships[4].author.orcid | https://orcid.org/0000-0002-9275-1965 |
| authorships[4].author.display_name | Xudong Li |
| authorships[4].countries | CN |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I4210127624 |
| authorships[4].affiliations[0].raw_affiliation_string | Research Institute of Technology Shougang Group Co. Ltd, Beijing, 100043, China |
| authorships[4].institutions[0].id | https://openalex.org/I4210127624 |
| authorships[4].institutions[0].ror | https://ror.org/03agmnc67 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I4210127624 |
| authorships[4].institutions[0].country_code | CN |
| authorships[4].institutions[0].display_name | Shougang Institute of Technology |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Xudong Li |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | Research Institute of Technology Shougang Group Co. Ltd, Beijing, 100043, China |
| authorships[5].author.id | https://openalex.org/A5052048540 |
| authorships[5].author.orcid | https://orcid.org/0000-0002-7032-4655 |
| authorships[5].author.display_name | Jie Sun |
| authorships[5].countries | CN |
| authorships[5].affiliations[0].institution_ids | https://openalex.org/I9224756 |
| authorships[5].affiliations[0].raw_affiliation_string | State Key Laboratory of Digital Steel, Northeastern University, Shenyang, 110819, China |
| authorships[5].institutions[0].id | https://openalex.org/I9224756 |
| authorships[5].institutions[0].ror | https://ror.org/03awzbc87 |
| authorships[5].institutions[0].type | education |
| authorships[5].institutions[0].lineage | https://openalex.org/I9224756 |
| authorships[5].institutions[0].country_code | CN |
| authorships[5].institutions[0].display_name | Northeastern University |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Jie Sun |
| authorships[5].is_corresponding | False |
| authorships[5].raw_affiliation_strings | State Key Laboratory of Digital Steel, Northeastern University, Shenyang, 110819, China |
| authorships[6].author.id | https://openalex.org/A5040659448 |
| authorships[6].author.orcid | https://orcid.org/0000-0003-3078-171X |
| authorships[6].author.display_name | Dianhua Zhang |
| authorships[6].countries | CN |
| authorships[6].affiliations[0].institution_ids | https://openalex.org/I9224756 |
| authorships[6].affiliations[0].raw_affiliation_string | State Key Laboratory of Digital Steel, Northeastern University, Shenyang, 110819, China |
| authorships[6].institutions[0].id | https://openalex.org/I9224756 |
| authorships[6].institutions[0].ror | https://ror.org/03awzbc87 |
| authorships[6].institutions[0].type | education |
| authorships[6].institutions[0].lineage | https://openalex.org/I9224756 |
| authorships[6].institutions[0].country_code | CN |
| authorships[6].institutions[0].display_name | Northeastern University |
| authorships[6].author_position | last |
| authorships[6].raw_author_name | Dianhua Zhang |
| authorships[6].is_corresponding | False |
| authorships[6].raw_affiliation_strings | State Key Laboratory of Digital Steel, Northeastern University, Shenyang, 110819, China |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://link.springer.com/content/pdf/10.1007/s42452-025-06920-7.pdf |
| open_access.oa_status | diamond |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Surface defect detection on rolling mill rolls: a transfer learning approach with improved YOLOv5 |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T12111 |
| primary_topic.field.id | https://openalex.org/fields/22 |
| primary_topic.field.display_name | Engineering |
| primary_topic.score | 0.9980000257492065 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2209 |
| primary_topic.subfield.display_name | Industrial and Manufacturing Engineering |
| primary_topic.display_name | Industrial Vision Systems and Defect Detection |
| related_works | https://openalex.org/W2520165268, https://openalex.org/W2370781105, https://openalex.org/W2162526451, https://openalex.org/W2512008118, https://openalex.org/W3022945664, https://openalex.org/W4386435900, https://openalex.org/W2357572353, https://openalex.org/W4240135517, https://openalex.org/W2377250750, https://openalex.org/W2350695530 |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | doi:10.1007/s42452-025-06920-7 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S5407042868 |
| best_oa_location.source.issn | 3004-9261 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 3004-9261 |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | Discover Applied Sciences |
| best_oa_location.source.host_organization | |
| best_oa_location.source.host_organization_name | |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://link.springer.com/content/pdf/10.1007/s42452-025-06920-7.pdf |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Discover Applied Sciences |
| best_oa_location.landing_page_url | https://doi.org/10.1007/s42452-025-06920-7 |
| primary_location.id | doi:10.1007/s42452-025-06920-7 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S5407042868 |
| primary_location.source.issn | 3004-9261 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 3004-9261 |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | Discover Applied Sciences |
| primary_location.source.host_organization | |
| primary_location.source.host_organization_name | |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://link.springer.com/content/pdf/10.1007/s42452-025-06920-7.pdf |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Discover Applied Sciences |
| primary_location.landing_page_url | https://doi.org/10.1007/s42452-025-06920-7 |
| publication_date | 2025-06-18 |
| publication_year | 2025 |
| referenced_works | https://openalex.org/W3168685493, https://openalex.org/W4296871629, https://openalex.org/W3206415899, https://openalex.org/W3212471930, https://openalex.org/W3132342156, https://openalex.org/W3015486657, https://openalex.org/W4403812047, https://openalex.org/W4376141703, https://openalex.org/W3013050809, https://openalex.org/W3210062351, https://openalex.org/W3203368756, https://openalex.org/W3162138249, https://openalex.org/W3126618193, https://openalex.org/W4398202167, https://openalex.org/W4317796687, https://openalex.org/W3163646131, https://openalex.org/W4225321635, https://openalex.org/W4393376891, https://openalex.org/W4225616511, https://openalex.org/W2944303778, https://openalex.org/W4382059335, https://openalex.org/W2928165649, https://openalex.org/W3215916782, https://openalex.org/W3194790201, https://openalex.org/W2990763144, https://openalex.org/W3122173535, https://openalex.org/W1986614398, https://openalex.org/W4379647709, https://openalex.org/W4402130399, https://openalex.org/W3081792418, https://openalex.org/W4399090816 |
| referenced_works_count | 31 |
| abstract_inverted_index.a | 4, 62, 85, 96 |
| abstract_inverted_index.To | 55, 100 |
| abstract_inverted_index.an | 71, 167, 177 |
| abstract_inverted_index.as | 145 |
| abstract_inverted_index.in | 7 |
| abstract_inverted_index.is | 3, 22, 47 |
| abstract_inverted_index.it | 175 |
| abstract_inverted_index.of | 18, 77, 180 |
| abstract_inverted_index.on | 42, 67, 150, 191 |
| abstract_inverted_index.to | 49, 114 |
| abstract_inverted_index.The | 1, 123 |
| abstract_inverted_index.and | 15, 32, 53, 70, 187 |
| abstract_inverted_index.for | 24, 81, 129, 148 |
| abstract_inverted_index.its | 121 |
| abstract_inverted_index.low | 51 |
| abstract_inverted_index.mAP | 178 |
| abstract_inverted_index.the | 8, 75, 103, 106, 116, 137, 151, 159, 184, 192 |
| abstract_inverted_index.was | 88, 126 |
| abstract_inverted_index.7.1% | 188 |
| abstract_inverted_index.9.8% | 182 |
| abstract_inverted_index.from | 95, 140 |
| abstract_inverted_index.lack | 76 |
| abstract_inverted_index.over | 183, 189 |
| abstract_inverted_index.roll | 19, 38, 82, 130, 152, 193 |
| abstract_inverted_index.that | 158 |
| abstract_inverted_index.then | 127 |
| abstract_inverted_index.this | 59 |
| abstract_inverted_index.tool | 6 |
| abstract_inverted_index.with | 166 |
| abstract_inverted_index.Rapid | 14 |
| abstract_inverted_index.based | 66 |
| abstract_inverted_index.first | 89 |
| abstract_inverted_index.line. | 99 |
| abstract_inverted_index.model | 125 |
| abstract_inverted_index.prone | 48 |
| abstract_inverted_index.scrap | 34 |
| abstract_inverted_index.steel | 11, 97 |
| abstract_inverted_index.strip | 10, 109, 141 |
| abstract_inverted_index.study | 60 |
| abstract_inverted_index.these | 57 |
| abstract_inverted_index.using | 91, 133 |
| abstract_inverted_index.where | 136 |
| abstract_inverted_index.which | 46 |
| abstract_inverted_index.YOLOv5 | 73, 118, 169, 186 |
| abstract_inverted_index.YOLOv7 | 190 |
| abstract_inverted_index.defect | 63, 92, 111, 131, 153, 195 |
| abstract_inverted_index.images | 93 |
| abstract_inverted_index.manual | 43 |
| abstract_inverted_index.method | 65 |
| abstract_inverted_index.model, | 105, 119, 162 |
| abstract_inverted_index.rates. | 35 |
| abstract_inverted_index.relies | 41 |
| abstract_inverted_index.roller | 2 |
| abstract_inverted_index.served | 144 |
| abstract_inverted_index.visual | 44 |
| abstract_inverted_index.NEU-DET | 107 |
| abstract_inverted_index.adapted | 128 |
| abstract_inverted_index.crucial | 5 |
| abstract_inverted_index.dataset | 87 |
| abstract_inverted_index.defects | 21, 143 |
| abstract_inverted_index.further | 101 |
| abstract_inverted_index.initial | 146 |
| abstract_inverted_index.learned | 138 |
| abstract_inverted_index.models. | 173 |
| abstract_inverted_index.product | 26 |
| abstract_inverted_index.results | 156 |
| abstract_inverted_index.surface | 20, 27, 83, 110, 142, 194 |
| abstract_inverted_index.weights | 147 |
| abstract_inverted_index.Abstract | 0 |
| abstract_inverted_index.accurate | 16 |
| abstract_inverted_index.achieves | 176 |
| abstract_inverted_index.dataset. | 154, 196 |
| abstract_inverted_index.datasets | 80 |
| abstract_inverted_index.defects, | 84 |
| abstract_inverted_index.employed | 113 |
| abstract_inverted_index.enhanced | 72 |
| abstract_inverted_index.ensuring | 29 |
| abstract_inverted_index.existing | 172 |
| abstract_inverted_index.improved | 117, 168 |
| abstract_inverted_index.learning | 69, 165 |
| abstract_inverted_index.optimize | 102 |
| abstract_inverted_index.original | 185 |
| abstract_inverted_index.overcome | 56 |
| abstract_inverted_index.process. | 13 |
| abstract_inverted_index.proposed | 160 |
| abstract_inverted_index.publicly | 78 |
| abstract_inverted_index.quality, | 28 |
| abstract_inverted_index.reducing | 33 |
| abstract_inverted_index.refining | 120 |
| abstract_inverted_index.training | 149 |
| abstract_inverted_index.transfer | 68, 134, 164 |
| abstract_inverted_index.accuracy, | 52 |
| abstract_inverted_index.available | 79 |
| abstract_inverted_index.collected | 94 |
| abstract_inverted_index.detection | 17, 64, 104, 132 |
| abstract_inverted_index.enhancing | 25 |
| abstract_inverted_index.essential | 23 |
| abstract_inverted_index.learning, | 135 |
| abstract_inverted_index.pre-train | 115 |
| abstract_inverted_index.primarily | 40 |
| abstract_inverted_index.Currently, | 36 |
| abstract_inverted_index.hot-rolled | 9 |
| abstract_inverted_index.industrial | 37 |
| abstract_inverted_index.inspection | 39 |
| abstract_inverted_index.introduces | 61 |
| abstract_inverted_index.parameters | 139 |
| abstract_inverted_index.precision, | 31 |
| abstract_inverted_index.production | 98 |
| abstract_inverted_index.assessment, | 45 |
| abstract_inverted_index.constructed | 90 |
| abstract_inverted_index.demonstrate | 157 |
| abstract_inverted_index.dimensional | 30 |
| abstract_inverted_index.improvement | 179 |
| abstract_inverted_index.integrating | 163 |
| abstract_inverted_index.model.Given | 74 |
| abstract_inverted_index.outperforms | 171 |
| abstract_inverted_index.parameters. | 122 |
| abstract_inverted_index.pre-trained | 124 |
| abstract_inverted_index.Experimental | 155 |
| abstract_inverted_index.images—was | 112 |
| abstract_inverted_index.limitations, | 58 |
| abstract_inverted_index.Specifically, | 174 |
| abstract_inverted_index.TR-CNF-YOLOv5 | 161 |
| abstract_inverted_index.approximately | 181 |
| abstract_inverted_index.architecture, | 170 |
| abstract_inverted_index.inefficiency. | 54 |
| abstract_inverted_index.manufacturing | 12 |
| abstract_inverted_index.subjectivity, | 50 |
| abstract_inverted_index.representative | 86 |
| abstract_inverted_index.dataset—containing | 108 |
| cited_by_percentile_year | |
| countries_distinct_count | 1 |
| institutions_distinct_count | 7 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/9 |
| sustainable_development_goals[0].score | 0.5299999713897705 |
| sustainable_development_goals[0].display_name | Industry, innovation and infrastructure |
| citation_normalized_percentile.value | 0.31246109 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |