SURFACE NORMAL RECONSTRUCTION USING POLARIZATION-UNET Article Swipe
YOU?
·
· 2023
· Open Access
·
· DOI: https://doi.org/10.5194/isprs-annals-x-4-w1-2022-537-2023
Today, three-dimensional reconstruction of objects has many applications in various fields, and therefore, choosing a suitable method for high resolution three-dimensional reconstruction is an important issue and displaying high-level details in three-dimensional models is a serious challenge in this field. Until now, active methods have been used for high-resolution three-dimensional reconstruction. But the problem of active three-dimensional reconstruction methods is that they require a light source close to the object. Shape from polarization (SfP) is one of the best solutions for high-resolution three-dimensional reconstruction of objects, which is a passive method and does not have the drawbacks of active methods. The changes in polarization of the reflected light from an object can be analyzed by using a polarization camera or locating polarizing filter in front of the digital camera and rotating the filter. Using this information, the surface normal can be reconstructed with high accuracy, which will lead to local reconstruction of the surface details. In this paper, an end-to-end deep learning approach has been presented to produce the surface normal of objects. In this method a benchmark dataset has been used to train the neural network and evaluate the results. The results have been evaluated quantitatively and qualitatively by other methods and under different lighting conditions. The MAE value (Mean-Angular-Error) has been used for results evaluation. The evaluations showed that the proposed method could accurately reconstruct the surface normal of objects with the lowest MAE value which is equal to 18.06 degree on the whole dataset, in comparison to previous physics-based methods which are between 41.44 and 49.03 degree.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.5194/isprs-annals-x-4-w1-2022-537-2023
- https://www.isprs-ann-photogramm-remote-sens-spatial-inf-sci.net/X-4-W1-2022/537/2023/isprs-annals-X-4-W1-2022-537-2023.pdf
- OA Status
- diamond
- Cited By
- 1
- References
- 55
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4316259512
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4316259512Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.5194/isprs-annals-x-4-w1-2022-537-2023Digital Object Identifier
- Title
-
SURFACE NORMAL RECONSTRUCTION USING POLARIZATION-UNETWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2023Year of publication
- Publication date
-
2023-01-14Full publication date if available
- Authors
-
F. S. Mortazavi, Seyedeh Parisa Dajkhosh, M. SaadatsereshtList of authors in order
- Landing page
-
https://doi.org/10.5194/isprs-annals-x-4-w1-2022-537-2023Publisher landing page
- PDF URL
-
https://www.isprs-ann-photogramm-remote-sens-spatial-inf-sci.net/X-4-W1-2022/537/2023/isprs-annals-X-4-W1-2022-537-2023.pdfDirect link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
diamondOpen access status per OpenAlex
- OA URL
-
https://www.isprs-ann-photogramm-remote-sens-spatial-inf-sci.net/X-4-W1-2022/537/2023/isprs-annals-X-4-W1-2022-537-2023.pdfDirect OA link when available
- Concepts
-
Surface reconstruction, Artificial intelligence, Computer vision, Computer science, Polarization (electrochemistry), Iterative reconstruction, Normal, Polarizing filter, Optics, Surface (topology), Algorithm, Mathematics, Physics, Optical filter, Geometry, Physical chemistry, ChemistryTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
1Total citation count in OpenAlex
- Citations by year (recent)
-
2024: 1Per-year citation counts (last 5 years)
- References (count)
-
55Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4316259512 |
|---|---|
| doi | https://doi.org/10.5194/isprs-annals-x-4-w1-2022-537-2023 |
| ids.doi | https://doi.org/10.5194/isprs-annals-x-4-w1-2022-537-2023 |
| ids.openalex | https://openalex.org/W4316259512 |
| fwci | 0.18196834 |
| type | article |
| title | SURFACE NORMAL RECONSTRUCTION USING POLARIZATION-UNET |
| biblio.issue | |
| biblio.volume | X-4/W1-2022 |
| biblio.last_page | 543 |
| biblio.first_page | 537 |
| topics[0].id | https://openalex.org/T10638 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9922999739646912 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1707 |
| topics[0].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[0].display_name | Optical measurement and interference techniques |
| topics[1].id | https://openalex.org/T12050 |
| topics[1].field.id | https://openalex.org/fields/22 |
| topics[1].field.display_name | Engineering |
| topics[1].score | 0.9890999794006348 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2204 |
| topics[1].subfield.display_name | Biomedical Engineering |
| topics[1].display_name | Optical Polarization and Ellipsometry |
| topics[2].id | https://openalex.org/T11211 |
| topics[2].field.id | https://openalex.org/fields/19 |
| topics[2].field.display_name | Earth and Planetary Sciences |
| topics[2].score | 0.9675999879837036 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1907 |
| topics[2].subfield.display_name | Geology |
| topics[2].display_name | 3D Surveying and Cultural Heritage |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C20885615 |
| concepts[0].level | 3 |
| concepts[0].score | 0.6333714723587036 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q825595 |
| concepts[0].display_name | Surface reconstruction |
| concepts[1].id | https://openalex.org/C154945302 |
| concepts[1].level | 1 |
| concepts[1].score | 0.6226993203163147 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[1].display_name | Artificial intelligence |
| concepts[2].id | https://openalex.org/C31972630 |
| concepts[2].level | 1 |
| concepts[2].score | 0.6028189659118652 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q844240 |
| concepts[2].display_name | Computer vision |
| concepts[3].id | https://openalex.org/C41008148 |
| concepts[3].level | 0 |
| concepts[3].score | 0.5987874269485474 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[3].display_name | Computer science |
| concepts[4].id | https://openalex.org/C205049153 |
| concepts[4].level | 2 |
| concepts[4].score | 0.5781974792480469 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q2698605 |
| concepts[4].display_name | Polarization (electrochemistry) |
| concepts[5].id | https://openalex.org/C141379421 |
| concepts[5].level | 2 |
| concepts[5].score | 0.46019959449768066 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q6094427 |
| concepts[5].display_name | Iterative reconstruction |
| concepts[6].id | https://openalex.org/C118732077 |
| concepts[6].level | 3 |
| concepts[6].score | 0.4545653164386749 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q273176 |
| concepts[6].display_name | Normal |
| concepts[7].id | https://openalex.org/C14860423 |
| concepts[7].level | 3 |
| concepts[7].score | 0.42746907472610474 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q868354 |
| concepts[7].display_name | Polarizing filter |
| concepts[8].id | https://openalex.org/C120665830 |
| concepts[8].level | 1 |
| concepts[8].score | 0.3706137537956238 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q14620 |
| concepts[8].display_name | Optics |
| concepts[9].id | https://openalex.org/C2776799497 |
| concepts[9].level | 2 |
| concepts[9].score | 0.3253597617149353 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q484298 |
| concepts[9].display_name | Surface (topology) |
| concepts[10].id | https://openalex.org/C11413529 |
| concepts[10].level | 1 |
| concepts[10].score | 0.32263851165771484 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q8366 |
| concepts[10].display_name | Algorithm |
| concepts[11].id | https://openalex.org/C33923547 |
| concepts[11].level | 0 |
| concepts[11].score | 0.2420937716960907 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[11].display_name | Mathematics |
| concepts[12].id | https://openalex.org/C121332964 |
| concepts[12].level | 0 |
| concepts[12].score | 0.2396029531955719 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q413 |
| concepts[12].display_name | Physics |
| concepts[13].id | https://openalex.org/C45613198 |
| concepts[13].level | 2 |
| concepts[13].score | 0.17504501342773438 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q1134091 |
| concepts[13].display_name | Optical filter |
| concepts[14].id | https://openalex.org/C2524010 |
| concepts[14].level | 1 |
| concepts[14].score | 0.1550692319869995 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q8087 |
| concepts[14].display_name | Geometry |
| concepts[15].id | https://openalex.org/C147789679 |
| concepts[15].level | 1 |
| concepts[15].score | 0.0 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q11372 |
| concepts[15].display_name | Physical chemistry |
| concepts[16].id | https://openalex.org/C185592680 |
| concepts[16].level | 0 |
| concepts[16].score | 0.0 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q2329 |
| concepts[16].display_name | Chemistry |
| keywords[0].id | https://openalex.org/keywords/surface-reconstruction |
| keywords[0].score | 0.6333714723587036 |
| keywords[0].display_name | Surface reconstruction |
| keywords[1].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[1].score | 0.6226993203163147 |
| keywords[1].display_name | Artificial intelligence |
| keywords[2].id | https://openalex.org/keywords/computer-vision |
| keywords[2].score | 0.6028189659118652 |
| keywords[2].display_name | Computer vision |
| keywords[3].id | https://openalex.org/keywords/computer-science |
| keywords[3].score | 0.5987874269485474 |
| keywords[3].display_name | Computer science |
| keywords[4].id | https://openalex.org/keywords/polarization |
| keywords[4].score | 0.5781974792480469 |
| keywords[4].display_name | Polarization (electrochemistry) |
| keywords[5].id | https://openalex.org/keywords/iterative-reconstruction |
| keywords[5].score | 0.46019959449768066 |
| keywords[5].display_name | Iterative reconstruction |
| keywords[6].id | https://openalex.org/keywords/normal |
| keywords[6].score | 0.4545653164386749 |
| keywords[6].display_name | Normal |
| keywords[7].id | https://openalex.org/keywords/polarizing-filter |
| keywords[7].score | 0.42746907472610474 |
| keywords[7].display_name | Polarizing filter |
| keywords[8].id | https://openalex.org/keywords/optics |
| keywords[8].score | 0.3706137537956238 |
| keywords[8].display_name | Optics |
| keywords[9].id | https://openalex.org/keywords/surface |
| keywords[9].score | 0.3253597617149353 |
| keywords[9].display_name | Surface (topology) |
| keywords[10].id | https://openalex.org/keywords/algorithm |
| keywords[10].score | 0.32263851165771484 |
| keywords[10].display_name | Algorithm |
| keywords[11].id | https://openalex.org/keywords/mathematics |
| keywords[11].score | 0.2420937716960907 |
| keywords[11].display_name | Mathematics |
| keywords[12].id | https://openalex.org/keywords/physics |
| keywords[12].score | 0.2396029531955719 |
| keywords[12].display_name | Physics |
| keywords[13].id | https://openalex.org/keywords/optical-filter |
| keywords[13].score | 0.17504501342773438 |
| keywords[13].display_name | Optical filter |
| keywords[14].id | https://openalex.org/keywords/geometry |
| keywords[14].score | 0.1550692319869995 |
| keywords[14].display_name | Geometry |
| language | en |
| locations[0].id | doi:10.5194/isprs-annals-x-4-w1-2022-537-2023 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S2737735205 |
| locations[0].source.issn | 2194-9042, 2194-9050, 2196-6346 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2194-9042 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | ISPRS annals of the photogrammetry, remote sensing and spatial information sciences |
| locations[0].source.host_organization | https://openalex.org/P4310313756 |
| locations[0].source.host_organization_name | Copernicus Publications |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310313756 |
| locations[0].source.host_organization_lineage_names | Copernicus Publications |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://www.isprs-ann-photogramm-remote-sens-spatial-inf-sci.net/X-4-W1-2022/537/2023/isprs-annals-X-4-W1-2022-537-2023.pdf |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences |
| locations[0].landing_page_url | https://doi.org/10.5194/isprs-annals-x-4-w1-2022-537-2023 |
| locations[1].id | pmh:oai:arXiv.org:2406.15118 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | https://arxiv.org/pdf/2406.15118 |
| locations[1].version | submittedVersion |
| locations[1].raw_type | text |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | http://arxiv.org/abs/2406.15118 |
| locations[2].id | pmh:oai:doaj.org/article:47eb3e54f6c04b7b868d6b6b2343c50d |
| locations[2].is_oa | False |
| locations[2].source.id | https://openalex.org/S4306401280 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | False |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[2].source.host_organization | |
| locations[2].source.host_organization_name | |
| locations[2].license | |
| locations[2].pdf_url | |
| locations[2].version | submittedVersion |
| locations[2].raw_type | article |
| locations[2].license_id | |
| locations[2].is_accepted | False |
| locations[2].is_published | False |
| locations[2].raw_source_name | ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Vol X-4-W1-2022, Pp 537-543 (2023) |
| locations[2].landing_page_url | https://doaj.org/article/47eb3e54f6c04b7b868d6b6b2343c50d |
| indexed_in | arxiv, crossref, doaj |
| authorships[0].author.id | https://openalex.org/A5032845922 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | F. S. Mortazavi |
| authorships[0].countries | IR |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I23946033 |
| authorships[0].affiliations[0].raw_affiliation_string | School of Surveying and Geospatial Engineering, College of Engineering, University of Tehran, Tehran, Iran |
| authorships[0].institutions[0].id | https://openalex.org/I23946033 |
| authorships[0].institutions[0].ror | https://ror.org/05vf56z40 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I23946033 |
| authorships[0].institutions[0].country_code | IR |
| authorships[0].institutions[0].display_name | University of Tehran |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | F. S. Mortazavi |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | School of Surveying and Geospatial Engineering, College of Engineering, University of Tehran, Tehran, Iran |
| authorships[1].author.id | https://openalex.org/A5005646468 |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | Seyedeh Parisa Dajkhosh |
| authorships[1].countries | IR |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I23946033 |
| authorships[1].affiliations[0].raw_affiliation_string | School of Mathematics, Statistics and Computer Science, College of Science, University of Tehran, Tehran, Iran |
| authorships[1].institutions[0].id | https://openalex.org/I23946033 |
| authorships[1].institutions[0].ror | https://ror.org/05vf56z40 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I23946033 |
| authorships[1].institutions[0].country_code | IR |
| authorships[1].institutions[0].display_name | University of Tehran |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | S. Dajkhosh |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | School of Mathematics, Statistics and Computer Science, College of Science, University of Tehran, Tehran, Iran |
| authorships[2].author.id | https://openalex.org/A5085037233 |
| authorships[2].author.orcid | |
| authorships[2].author.display_name | M. Saadatseresht |
| authorships[2].countries | IR |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I23946033 |
| authorships[2].affiliations[0].raw_affiliation_string | School of Surveying and Geospatial Engineering, College of Engineering, University of Tehran, Tehran, Iran |
| authorships[2].institutions[0].id | https://openalex.org/I23946033 |
| authorships[2].institutions[0].ror | https://ror.org/05vf56z40 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I23946033 |
| authorships[2].institutions[0].country_code | IR |
| authorships[2].institutions[0].display_name | University of Tehran |
| authorships[2].author_position | last |
| authorships[2].raw_author_name | M. Saadatseresht |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | School of Surveying and Geospatial Engineering, College of Engineering, University of Tehran, Tehran, Iran |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://www.isprs-ann-photogramm-remote-sens-spatial-inf-sci.net/X-4-W1-2022/537/2023/isprs-annals-X-4-W1-2022-537-2023.pdf |
| open_access.oa_status | diamond |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | SURFACE NORMAL RECONSTRUCTION USING POLARIZATION-UNET |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10638 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9922999739646912 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1707 |
| primary_topic.subfield.display_name | Computer Vision and Pattern Recognition |
| primary_topic.display_name | Optical measurement and interference techniques |
| related_works | https://openalex.org/W4321076456, https://openalex.org/W1999081819, https://openalex.org/W4385921699, https://openalex.org/W2370893992, https://openalex.org/W2137488636, https://openalex.org/W2361523168, https://openalex.org/W2103597594, https://openalex.org/W3133812613, https://openalex.org/W2365360113, https://openalex.org/W2012525677 |
| cited_by_count | 1 |
| counts_by_year[0].year | 2024 |
| counts_by_year[0].cited_by_count | 1 |
| locations_count | 3 |
| best_oa_location.id | doi:10.5194/isprs-annals-x-4-w1-2022-537-2023 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S2737735205 |
| best_oa_location.source.issn | 2194-9042, 2194-9050, 2196-6346 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2194-9042 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | ISPRS annals of the photogrammetry, remote sensing and spatial information sciences |
| best_oa_location.source.host_organization | https://openalex.org/P4310313756 |
| best_oa_location.source.host_organization_name | Copernicus Publications |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310313756 |
| best_oa_location.source.host_organization_lineage_names | Copernicus Publications |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://www.isprs-ann-photogramm-remote-sens-spatial-inf-sci.net/X-4-W1-2022/537/2023/isprs-annals-X-4-W1-2022-537-2023.pdf |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences |
| best_oa_location.landing_page_url | https://doi.org/10.5194/isprs-annals-x-4-w1-2022-537-2023 |
| primary_location.id | doi:10.5194/isprs-annals-x-4-w1-2022-537-2023 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S2737735205 |
| primary_location.source.issn | 2194-9042, 2194-9050, 2196-6346 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2194-9042 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | ISPRS annals of the photogrammetry, remote sensing and spatial information sciences |
| primary_location.source.host_organization | https://openalex.org/P4310313756 |
| primary_location.source.host_organization_name | Copernicus Publications |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310313756 |
| primary_location.source.host_organization_lineage_names | Copernicus Publications |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://www.isprs-ann-photogramm-remote-sens-spatial-inf-sci.net/X-4-W1-2022/537/2023/isprs-annals-X-4-W1-2022-537-2023.pdf |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences |
| primary_location.landing_page_url | https://doi.org/10.5194/isprs-annals-x-4-w1-2022-537-2023 |
| publication_date | 2023-01-14 |
| publication_year | 2023 |
| referenced_works | https://openalex.org/W2883425483, https://openalex.org/W2148533673, https://openalex.org/W2165101214, https://openalex.org/W1500958801, https://openalex.org/W2096244937, https://openalex.org/W6736935286, https://openalex.org/W6777993339, https://openalex.org/W6741493445, https://openalex.org/W6676297131, https://openalex.org/W3158090400, https://openalex.org/W6680552568, https://openalex.org/W1533861849, https://openalex.org/W6687483927, https://openalex.org/W2642464438, https://openalex.org/W3034233533, https://openalex.org/W6726732716, https://openalex.org/W6810862118, https://openalex.org/W2041528140, https://openalex.org/W2078466440, https://openalex.org/W2524117190, https://openalex.org/W1982526637, https://openalex.org/W2127670691, https://openalex.org/W2030665335, https://openalex.org/W1964369825, https://openalex.org/W2028401795, https://openalex.org/W1960300181, https://openalex.org/W2053715291, https://openalex.org/W2129263327, https://openalex.org/W6635670821, https://openalex.org/W1901129140, https://openalex.org/W2520696072, https://openalex.org/W2745530706, https://openalex.org/W2105883239, https://openalex.org/W2098551034, https://openalex.org/W6751095722, https://openalex.org/W6601313673, https://openalex.org/W6760867720, https://openalex.org/W2964290197, https://openalex.org/W2138306472, https://openalex.org/W1985613629, https://openalex.org/W3108796451, https://openalex.org/W2519384515, https://openalex.org/W2611814695, https://openalex.org/W2907458676, https://openalex.org/W2194775991, https://openalex.org/W1522301498, https://openalex.org/W2138334472, https://openalex.org/W4254494075, https://openalex.org/W3173390859, https://openalex.org/W4248025599, https://openalex.org/W2108598243, https://openalex.org/W2799174756, https://openalex.org/W4313185434, https://openalex.org/W2737550054, https://openalex.org/W2979526079 |
| referenced_works_count | 55 |
| abstract_inverted_index.a | 15, 35, 64, 89, 117, 177 |
| abstract_inverted_index.In | 156, 174 |
| abstract_inverted_index.an | 24, 110, 159 |
| abstract_inverted_index.be | 113, 141 |
| abstract_inverted_index.by | 115, 200 |
| abstract_inverted_index.in | 9, 31, 38, 103, 124, 248 |
| abstract_inverted_index.is | 23, 34, 60, 75, 88, 239 |
| abstract_inverted_index.of | 4, 55, 77, 85, 98, 105, 126, 152, 172, 231 |
| abstract_inverted_index.on | 244 |
| abstract_inverted_index.or | 120 |
| abstract_inverted_index.to | 68, 149, 167, 183, 241, 250 |
| abstract_inverted_index.But | 52 |
| abstract_inverted_index.MAE | 209, 236 |
| abstract_inverted_index.The | 101, 192, 208, 218 |
| abstract_inverted_index.and | 12, 27, 92, 130, 188, 198, 203, 258 |
| abstract_inverted_index.are | 255 |
| abstract_inverted_index.can | 112, 140 |
| abstract_inverted_index.for | 18, 48, 81, 215 |
| abstract_inverted_index.has | 6, 164, 180, 212 |
| abstract_inverted_index.not | 94 |
| abstract_inverted_index.one | 76 |
| abstract_inverted_index.the | 53, 69, 78, 96, 106, 127, 132, 137, 153, 169, 185, 190, 222, 228, 234, 245 |
| abstract_inverted_index.been | 46, 165, 181, 195, 213 |
| abstract_inverted_index.best | 79 |
| abstract_inverted_index.deep | 161 |
| abstract_inverted_index.does | 93 |
| abstract_inverted_index.from | 72, 109 |
| abstract_inverted_index.have | 45, 95, 194 |
| abstract_inverted_index.high | 19, 144 |
| abstract_inverted_index.lead | 148 |
| abstract_inverted_index.many | 7 |
| abstract_inverted_index.now, | 42 |
| abstract_inverted_index.that | 61, 221 |
| abstract_inverted_index.they | 62 |
| abstract_inverted_index.this | 39, 135, 157, 175 |
| abstract_inverted_index.used | 47, 182, 214 |
| abstract_inverted_index.will | 147 |
| abstract_inverted_index.with | 143, 233 |
| abstract_inverted_index.(SfP) | 74 |
| abstract_inverted_index.18.06 | 242 |
| abstract_inverted_index.41.44 | 257 |
| abstract_inverted_index.49.03 | 259 |
| abstract_inverted_index.Shape | 71 |
| abstract_inverted_index.Until | 41 |
| abstract_inverted_index.Using | 134 |
| abstract_inverted_index.close | 67 |
| abstract_inverted_index.could | 225 |
| abstract_inverted_index.equal | 240 |
| abstract_inverted_index.front | 125 |
| abstract_inverted_index.issue | 26 |
| abstract_inverted_index.light | 65, 108 |
| abstract_inverted_index.local | 150 |
| abstract_inverted_index.other | 201 |
| abstract_inverted_index.train | 184 |
| abstract_inverted_index.under | 204 |
| abstract_inverted_index.using | 116 |
| abstract_inverted_index.value | 210, 237 |
| abstract_inverted_index.which | 87, 146, 238, 254 |
| abstract_inverted_index.whole | 246 |
| abstract_inverted_index.Today, | 1 |
| abstract_inverted_index.active | 43, 56, 99 |
| abstract_inverted_index.camera | 119, 129 |
| abstract_inverted_index.degree | 243 |
| abstract_inverted_index.field. | 40 |
| abstract_inverted_index.filter | 123 |
| abstract_inverted_index.lowest | 235 |
| abstract_inverted_index.method | 17, 91, 176, 224 |
| abstract_inverted_index.models | 33 |
| abstract_inverted_index.neural | 186 |
| abstract_inverted_index.normal | 139, 171, 230 |
| abstract_inverted_index.object | 111 |
| abstract_inverted_index.paper, | 158 |
| abstract_inverted_index.showed | 220 |
| abstract_inverted_index.source | 66 |
| abstract_inverted_index.between | 256 |
| abstract_inverted_index.changes | 102 |
| abstract_inverted_index.dataset | 179 |
| abstract_inverted_index.degree. | 260 |
| abstract_inverted_index.details | 30 |
| abstract_inverted_index.digital | 128 |
| abstract_inverted_index.fields, | 11 |
| abstract_inverted_index.filter. | 133 |
| abstract_inverted_index.methods | 44, 59, 202, 253 |
| abstract_inverted_index.network | 187 |
| abstract_inverted_index.object. | 70 |
| abstract_inverted_index.objects | 5, 232 |
| abstract_inverted_index.passive | 90 |
| abstract_inverted_index.problem | 54 |
| abstract_inverted_index.produce | 168 |
| abstract_inverted_index.require | 63 |
| abstract_inverted_index.results | 193, 216 |
| abstract_inverted_index.serious | 36 |
| abstract_inverted_index.surface | 138, 154, 170, 229 |
| abstract_inverted_index.various | 10 |
| abstract_inverted_index.analyzed | 114 |
| abstract_inverted_index.approach | 163 |
| abstract_inverted_index.choosing | 14 |
| abstract_inverted_index.dataset, | 247 |
| abstract_inverted_index.details. | 155 |
| abstract_inverted_index.evaluate | 189 |
| abstract_inverted_index.learning | 162 |
| abstract_inverted_index.lighting | 206 |
| abstract_inverted_index.locating | 121 |
| abstract_inverted_index.methods. | 100 |
| abstract_inverted_index.objects, | 86 |
| abstract_inverted_index.objects. | 173 |
| abstract_inverted_index.previous | 251 |
| abstract_inverted_index.proposed | 223 |
| abstract_inverted_index.results. | 191 |
| abstract_inverted_index.rotating | 131 |
| abstract_inverted_index.suitable | 16 |
| abstract_inverted_index.Abstract. | 0 |
| abstract_inverted_index.accuracy, | 145 |
| abstract_inverted_index.benchmark | 178 |
| abstract_inverted_index.challenge | 37 |
| abstract_inverted_index.different | 205 |
| abstract_inverted_index.drawbacks | 97 |
| abstract_inverted_index.evaluated | 196 |
| abstract_inverted_index.important | 25 |
| abstract_inverted_index.presented | 166 |
| abstract_inverted_index.reflected | 107 |
| abstract_inverted_index.solutions | 80 |
| abstract_inverted_index.accurately | 226 |
| abstract_inverted_index.comparison | 249 |
| abstract_inverted_index.displaying | 28 |
| abstract_inverted_index.end-to-end | 160 |
| abstract_inverted_index.high-level | 29 |
| abstract_inverted_index.polarizing | 122 |
| abstract_inverted_index.resolution | 20 |
| abstract_inverted_index.therefore, | 13 |
| abstract_inverted_index.conditions. | 207 |
| abstract_inverted_index.evaluation. | 217 |
| abstract_inverted_index.evaluations | 219 |
| abstract_inverted_index.reconstruct | 227 |
| abstract_inverted_index.applications | 8 |
| abstract_inverted_index.information, | 136 |
| abstract_inverted_index.polarization | 73, 104, 118 |
| abstract_inverted_index.physics-based | 252 |
| abstract_inverted_index.qualitatively | 199 |
| abstract_inverted_index.reconstructed | 142 |
| abstract_inverted_index.quantitatively | 197 |
| abstract_inverted_index.reconstruction | 3, 22, 58, 84, 151 |
| abstract_inverted_index.high-resolution | 49, 82 |
| abstract_inverted_index.reconstruction. | 51 |
| abstract_inverted_index.three-dimensional | 2, 21, 32, 50, 57, 83 |
| abstract_inverted_index.(Mean-Angular-Error) | 211 |
| cited_by_percentile_year.max | 94 |
| cited_by_percentile_year.min | 90 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 3 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/11 |
| sustainable_development_goals[0].score | 0.6200000047683716 |
| sustainable_development_goals[0].display_name | Sustainable cities and communities |
| citation_normalized_percentile.value | 0.38435114 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |