Surface Roughness Prediction in Ultra-Precision Milling: An Extreme Learning Machine Method with Data Fusion Article Swipe
YOU?
·
· 2023
· Open Access
·
· DOI: https://doi.org/10.3390/mi14112016
This paper pioneers the use of the extreme learning machine (ELM) approach for surface roughness prediction in ultra-precision milling, leveraging the excellent fitting ability with small datasets and the fast learning speed of the extreme learning machine method. By providing abundant machining information, the machining parameters and force signal data are fused on the feature level to further improve ELM prediction accuracy. An ultra-precision milling experiment was designed and conducted to verify our proposed data-fusion-based ELM method. The results show that the ELM with data fusion outperforms other state-of-art methods in surface roughness prediction. It achieves an impressively low mean absolute percentage error of 1.6% while requiring a mere 18 s for model training.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.3390/mi14112016
- https://www.mdpi.com/2072-666X/14/11/2016/pdf?version=1698655101
- OA Status
- gold
- Cited By
- 9
- References
- 23
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4388020404
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4388020404Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.3390/mi14112016Digital Object Identifier
- Title
-
Surface Roughness Prediction in Ultra-Precision Milling: An Extreme Learning Machine Method with Data FusionWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2023Year of publication
- Publication date
-
2023-10-29Full publication date if available
- Authors
-
Suiyan Shang, Chunjin Wang, Xiaoliang Liang, Chi Fai Cheung, Pai ZhengList of authors in order
- Landing page
-
https://doi.org/10.3390/mi14112016Publisher landing page
- PDF URL
-
https://www.mdpi.com/2072-666X/14/11/2016/pdf?version=1698655101Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://www.mdpi.com/2072-666X/14/11/2016/pdf?version=1698655101Direct OA link when available
- Concepts
-
Extreme learning machine, Machining, Surface roughness, Fusion, Artificial intelligence, Sensor fusion, Computer science, Feature (linguistics), Surface finish, Mean absolute error, Machine learning, Pattern recognition (psychology), Algorithm, Artificial neural network, Materials science, Engineering, Mean squared error, Mechanical engineering, Mathematics, Statistics, Philosophy, Composite material, LinguisticsTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
9Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 5, 2024: 4Per-year citation counts (last 5 years)
- References (count)
-
23Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4388020404 |
|---|---|
| doi | https://doi.org/10.3390/mi14112016 |
| ids.doi | https://doi.org/10.3390/mi14112016 |
| ids.pmid | https://pubmed.ncbi.nlm.nih.gov/38004873 |
| ids.openalex | https://openalex.org/W4388020404 |
| fwci | 2.29898599 |
| type | article |
| title | Surface Roughness Prediction in Ultra-Precision Milling: An Extreme Learning Machine Method with Data Fusion |
| biblio.issue | 11 |
| biblio.volume | 14 |
| biblio.last_page | 2016 |
| biblio.first_page | 2016 |
| topics[0].id | https://openalex.org/T12676 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9991000294685364 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1702 |
| topics[0].subfield.display_name | Artificial Intelligence |
| topics[0].display_name | Machine Learning and ELM |
| topics[1].id | https://openalex.org/T11451 |
| topics[1].field.id | https://openalex.org/fields/22 |
| topics[1].field.display_name | Engineering |
| topics[1].score | 0.9926000237464905 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2208 |
| topics[1].subfield.display_name | Electrical and Electronic Engineering |
| topics[1].display_name | Advanced Machining and Optimization Techniques |
| topics[2].id | https://openalex.org/T10773 |
| topics[2].field.id | https://openalex.org/fields/13 |
| topics[2].field.display_name | Biochemistry, Genetics and Molecular Biology |
| topics[2].score | 0.9842000007629395 |
| topics[2].domain.id | https://openalex.org/domains/1 |
| topics[2].domain.display_name | Life Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1312 |
| topics[2].subfield.display_name | Molecular Biology |
| topics[2].display_name | Extracellular vesicles in disease |
| is_xpac | False |
| apc_list.value | 2000 |
| apc_list.currency | CHF |
| apc_list.value_usd | 2165 |
| apc_paid.value | 2000 |
| apc_paid.currency | CHF |
| apc_paid.value_usd | 2165 |
| concepts[0].id | https://openalex.org/C2780150128 |
| concepts[0].level | 3 |
| concepts[0].score | 0.912875771522522 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q21948731 |
| concepts[0].display_name | Extreme learning machine |
| concepts[1].id | https://openalex.org/C523214423 |
| concepts[1].level | 2 |
| concepts[1].score | 0.7158691883087158 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q192047 |
| concepts[1].display_name | Machining |
| concepts[2].id | https://openalex.org/C107365816 |
| concepts[2].level | 2 |
| concepts[2].score | 0.6661653518676758 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q114817 |
| concepts[2].display_name | Surface roughness |
| concepts[3].id | https://openalex.org/C158525013 |
| concepts[3].level | 2 |
| concepts[3].score | 0.5891373157501221 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q2593739 |
| concepts[3].display_name | Fusion |
| concepts[4].id | https://openalex.org/C154945302 |
| concepts[4].level | 1 |
| concepts[4].score | 0.5544824600219727 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[4].display_name | Artificial intelligence |
| concepts[5].id | https://openalex.org/C33954974 |
| concepts[5].level | 2 |
| concepts[5].score | 0.537992537021637 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q486494 |
| concepts[5].display_name | Sensor fusion |
| concepts[6].id | https://openalex.org/C41008148 |
| concepts[6].level | 0 |
| concepts[6].score | 0.5377891659736633 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[6].display_name | Computer science |
| concepts[7].id | https://openalex.org/C2776401178 |
| concepts[7].level | 2 |
| concepts[7].score | 0.5042098760604858 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q12050496 |
| concepts[7].display_name | Feature (linguistics) |
| concepts[8].id | https://openalex.org/C71039073 |
| concepts[8].level | 2 |
| concepts[8].score | 0.49018651247024536 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q3439090 |
| concepts[8].display_name | Surface finish |
| concepts[9].id | https://openalex.org/C188154048 |
| concepts[9].level | 3 |
| concepts[9].score | 0.45418867468833923 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q6803609 |
| concepts[9].display_name | Mean absolute error |
| concepts[10].id | https://openalex.org/C119857082 |
| concepts[10].level | 1 |
| concepts[10].score | 0.4525843560695648 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[10].display_name | Machine learning |
| concepts[11].id | https://openalex.org/C153180895 |
| concepts[11].level | 2 |
| concepts[11].score | 0.38563787937164307 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[11].display_name | Pattern recognition (psychology) |
| concepts[12].id | https://openalex.org/C11413529 |
| concepts[12].level | 1 |
| concepts[12].score | 0.3505564332008362 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q8366 |
| concepts[12].display_name | Algorithm |
| concepts[13].id | https://openalex.org/C50644808 |
| concepts[13].level | 2 |
| concepts[13].score | 0.32498979568481445 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q192776 |
| concepts[13].display_name | Artificial neural network |
| concepts[14].id | https://openalex.org/C192562407 |
| concepts[14].level | 0 |
| concepts[14].score | 0.2690635323524475 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q228736 |
| concepts[14].display_name | Materials science |
| concepts[15].id | https://openalex.org/C127413603 |
| concepts[15].level | 0 |
| concepts[15].score | 0.23606571555137634 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q11023 |
| concepts[15].display_name | Engineering |
| concepts[16].id | https://openalex.org/C139945424 |
| concepts[16].level | 2 |
| concepts[16].score | 0.20703256130218506 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q1940696 |
| concepts[16].display_name | Mean squared error |
| concepts[17].id | https://openalex.org/C78519656 |
| concepts[17].level | 1 |
| concepts[17].score | 0.16281765699386597 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q101333 |
| concepts[17].display_name | Mechanical engineering |
| concepts[18].id | https://openalex.org/C33923547 |
| concepts[18].level | 0 |
| concepts[18].score | 0.1601717174053192 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[18].display_name | Mathematics |
| concepts[19].id | https://openalex.org/C105795698 |
| concepts[19].level | 1 |
| concepts[19].score | 0.1406039595603943 |
| concepts[19].wikidata | https://www.wikidata.org/wiki/Q12483 |
| concepts[19].display_name | Statistics |
| concepts[20].id | https://openalex.org/C138885662 |
| concepts[20].level | 0 |
| concepts[20].score | 0.0 |
| concepts[20].wikidata | https://www.wikidata.org/wiki/Q5891 |
| concepts[20].display_name | Philosophy |
| concepts[21].id | https://openalex.org/C159985019 |
| concepts[21].level | 1 |
| concepts[21].score | 0.0 |
| concepts[21].wikidata | https://www.wikidata.org/wiki/Q181790 |
| concepts[21].display_name | Composite material |
| concepts[22].id | https://openalex.org/C41895202 |
| concepts[22].level | 1 |
| concepts[22].score | 0.0 |
| concepts[22].wikidata | https://www.wikidata.org/wiki/Q8162 |
| concepts[22].display_name | Linguistics |
| keywords[0].id | https://openalex.org/keywords/extreme-learning-machine |
| keywords[0].score | 0.912875771522522 |
| keywords[0].display_name | Extreme learning machine |
| keywords[1].id | https://openalex.org/keywords/machining |
| keywords[1].score | 0.7158691883087158 |
| keywords[1].display_name | Machining |
| keywords[2].id | https://openalex.org/keywords/surface-roughness |
| keywords[2].score | 0.6661653518676758 |
| keywords[2].display_name | Surface roughness |
| keywords[3].id | https://openalex.org/keywords/fusion |
| keywords[3].score | 0.5891373157501221 |
| keywords[3].display_name | Fusion |
| keywords[4].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[4].score | 0.5544824600219727 |
| keywords[4].display_name | Artificial intelligence |
| keywords[5].id | https://openalex.org/keywords/sensor-fusion |
| keywords[5].score | 0.537992537021637 |
| keywords[5].display_name | Sensor fusion |
| keywords[6].id | https://openalex.org/keywords/computer-science |
| keywords[6].score | 0.5377891659736633 |
| keywords[6].display_name | Computer science |
| keywords[7].id | https://openalex.org/keywords/feature |
| keywords[7].score | 0.5042098760604858 |
| keywords[7].display_name | Feature (linguistics) |
| keywords[8].id | https://openalex.org/keywords/surface-finish |
| keywords[8].score | 0.49018651247024536 |
| keywords[8].display_name | Surface finish |
| keywords[9].id | https://openalex.org/keywords/mean-absolute-error |
| keywords[9].score | 0.45418867468833923 |
| keywords[9].display_name | Mean absolute error |
| keywords[10].id | https://openalex.org/keywords/machine-learning |
| keywords[10].score | 0.4525843560695648 |
| keywords[10].display_name | Machine learning |
| keywords[11].id | https://openalex.org/keywords/pattern-recognition |
| keywords[11].score | 0.38563787937164307 |
| keywords[11].display_name | Pattern recognition (psychology) |
| keywords[12].id | https://openalex.org/keywords/algorithm |
| keywords[12].score | 0.3505564332008362 |
| keywords[12].display_name | Algorithm |
| keywords[13].id | https://openalex.org/keywords/artificial-neural-network |
| keywords[13].score | 0.32498979568481445 |
| keywords[13].display_name | Artificial neural network |
| keywords[14].id | https://openalex.org/keywords/materials-science |
| keywords[14].score | 0.2690635323524475 |
| keywords[14].display_name | Materials science |
| keywords[15].id | https://openalex.org/keywords/engineering |
| keywords[15].score | 0.23606571555137634 |
| keywords[15].display_name | Engineering |
| keywords[16].id | https://openalex.org/keywords/mean-squared-error |
| keywords[16].score | 0.20703256130218506 |
| keywords[16].display_name | Mean squared error |
| keywords[17].id | https://openalex.org/keywords/mechanical-engineering |
| keywords[17].score | 0.16281765699386597 |
| keywords[17].display_name | Mechanical engineering |
| keywords[18].id | https://openalex.org/keywords/mathematics |
| keywords[18].score | 0.1601717174053192 |
| keywords[18].display_name | Mathematics |
| keywords[19].id | https://openalex.org/keywords/statistics |
| keywords[19].score | 0.1406039595603943 |
| keywords[19].display_name | Statistics |
| language | en |
| locations[0].id | doi:10.3390/mi14112016 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S96702057 |
| locations[0].source.issn | 2072-666X |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2072-666X |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | Micromachines |
| locations[0].source.host_organization | https://openalex.org/P4310310987 |
| locations[0].source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310310987 |
| locations[0].source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://www.mdpi.com/2072-666X/14/11/2016/pdf?version=1698655101 |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Micromachines |
| locations[0].landing_page_url | https://doi.org/10.3390/mi14112016 |
| locations[1].id | pmid:38004873 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306525036 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | PubMed |
| locations[1].source.host_organization | https://openalex.org/I1299303238 |
| locations[1].source.host_organization_name | National Institutes of Health |
| locations[1].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | publishedVersion |
| locations[1].raw_type | |
| locations[1].license_id | |
| locations[1].is_accepted | True |
| locations[1].is_published | True |
| locations[1].raw_source_name | Micromachines |
| locations[1].landing_page_url | https://pubmed.ncbi.nlm.nih.gov/38004873 |
| locations[2].id | pmh:oai:pubmedcentral.nih.gov:10673044 |
| locations[2].is_oa | True |
| locations[2].source.id | https://openalex.org/S2764455111 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | False |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | PubMed Central |
| locations[2].source.host_organization | https://openalex.org/I1299303238 |
| locations[2].source.host_organization_name | National Institutes of Health |
| locations[2].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[2].license | cc-by |
| locations[2].pdf_url | https://pmc.ncbi.nlm.nih.gov/articles/PMC10673044/pdf/micromachines-14-02016.pdf |
| locations[2].version | submittedVersion |
| locations[2].raw_type | Text |
| locations[2].license_id | https://openalex.org/licenses/cc-by |
| locations[2].is_accepted | False |
| locations[2].is_published | False |
| locations[2].raw_source_name | Micromachines (Basel) |
| locations[2].landing_page_url | https://www.ncbi.nlm.nih.gov/pmc/articles/10673044 |
| locations[3].id | pmh:oai:doaj.org/article:6acddb3af60647b7959dac990e7ba2e3 |
| locations[3].is_oa | False |
| locations[3].source.id | https://openalex.org/S4306401280 |
| locations[3].source.issn | |
| locations[3].source.type | repository |
| locations[3].source.is_oa | False |
| locations[3].source.issn_l | |
| locations[3].source.is_core | False |
| locations[3].source.is_in_doaj | False |
| locations[3].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[3].source.host_organization | |
| locations[3].source.host_organization_name | |
| locations[3].license | |
| locations[3].pdf_url | |
| locations[3].version | submittedVersion |
| locations[3].raw_type | article |
| locations[3].license_id | |
| locations[3].is_accepted | False |
| locations[3].is_published | False |
| locations[3].raw_source_name | Micromachines, Vol 14, Iss 11, p 2016 (2023) |
| locations[3].landing_page_url | https://doaj.org/article/6acddb3af60647b7959dac990e7ba2e3 |
| locations[4].id | pmh:oai:ira.lib.polyu.edu.hk:10397/108824 |
| locations[4].is_oa | True |
| locations[4].source.id | https://openalex.org/S4306400205 |
| locations[4].source.issn | |
| locations[4].source.type | repository |
| locations[4].source.is_oa | False |
| locations[4].source.issn_l | |
| locations[4].source.is_core | False |
| locations[4].source.is_in_doaj | False |
| locations[4].source.display_name | PolyU Institutional Research Archive (Hong Kong Polytechnic University) |
| locations[4].source.host_organization | https://openalex.org/I14243506 |
| locations[4].source.host_organization_name | Hong Kong Polytechnic University |
| locations[4].source.host_organization_lineage | https://openalex.org/I14243506 |
| locations[4].license | cc-by |
| locations[4].pdf_url | |
| locations[4].version | submittedVersion |
| locations[4].raw_type | Journal/Magazine Article |
| locations[4].license_id | https://openalex.org/licenses/cc-by |
| locations[4].is_accepted | False |
| locations[4].is_published | False |
| locations[4].raw_source_name | |
| locations[4].landing_page_url | http://hdl.handle.net/10397/108824 |
| indexed_in | crossref, doaj, pubmed |
| authorships[0].author.id | https://openalex.org/A5050481473 |
| authorships[0].author.orcid | https://orcid.org/0000-0001-6203-6912 |
| authorships[0].author.display_name | Suiyan Shang |
| authorships[0].countries | HK |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I14243506 |
| authorships[0].affiliations[0].raw_affiliation_string | State Key Laboratory of Ultra-Precision Machining Technology, Department Industrial and Systems Engineering, The Hong Kong Polytechnic University, Hong Kong, China |
| authorships[0].institutions[0].id | https://openalex.org/I14243506 |
| authorships[0].institutions[0].ror | https://ror.org/0030zas98 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I14243506 |
| authorships[0].institutions[0].country_code | HK |
| authorships[0].institutions[0].display_name | Hong Kong Polytechnic University |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Suiyan Shang |
| authorships[0].is_corresponding | True |
| authorships[0].raw_affiliation_strings | State Key Laboratory of Ultra-Precision Machining Technology, Department Industrial and Systems Engineering, The Hong Kong Polytechnic University, Hong Kong, China |
| authorships[1].author.id | https://openalex.org/A5052933227 |
| authorships[1].author.orcid | https://orcid.org/0000-0001-5820-5939 |
| authorships[1].author.display_name | Chunjin Wang |
| authorships[1].countries | HK |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I14243506 |
| authorships[1].affiliations[0].raw_affiliation_string | State Key Laboratory of Ultra-Precision Machining Technology, Department Industrial and Systems Engineering, The Hong Kong Polytechnic University, Hong Kong, China |
| authorships[1].institutions[0].id | https://openalex.org/I14243506 |
| authorships[1].institutions[0].ror | https://ror.org/0030zas98 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I14243506 |
| authorships[1].institutions[0].country_code | HK |
| authorships[1].institutions[0].display_name | Hong Kong Polytechnic University |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Chunjin Wang |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | State Key Laboratory of Ultra-Precision Machining Technology, Department Industrial and Systems Engineering, The Hong Kong Polytechnic University, Hong Kong, China |
| authorships[2].author.id | https://openalex.org/A5008555321 |
| authorships[2].author.orcid | https://orcid.org/0000-0001-6674-9354 |
| authorships[2].author.display_name | Xiaoliang Liang |
| authorships[2].countries | HK |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I14243506 |
| authorships[2].affiliations[0].raw_affiliation_string | State Key Laboratory of Ultra-Precision Machining Technology, Department Industrial and Systems Engineering, The Hong Kong Polytechnic University, Hong Kong, China |
| authorships[2].institutions[0].id | https://openalex.org/I14243506 |
| authorships[2].institutions[0].ror | https://ror.org/0030zas98 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I14243506 |
| authorships[2].institutions[0].country_code | HK |
| authorships[2].institutions[0].display_name | Hong Kong Polytechnic University |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Xiaoliang Liang |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | State Key Laboratory of Ultra-Precision Machining Technology, Department Industrial and Systems Engineering, The Hong Kong Polytechnic University, Hong Kong, China |
| authorships[3].author.id | https://openalex.org/A5080086653 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-6066-7419 |
| authorships[3].author.display_name | Chi Fai Cheung |
| authorships[3].countries | HK |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I14243506 |
| authorships[3].affiliations[0].raw_affiliation_string | State Key Laboratory of Ultra-Precision Machining Technology, Department Industrial and Systems Engineering, The Hong Kong Polytechnic University, Hong Kong, China |
| authorships[3].institutions[0].id | https://openalex.org/I14243506 |
| authorships[3].institutions[0].ror | https://ror.org/0030zas98 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I14243506 |
| authorships[3].institutions[0].country_code | HK |
| authorships[3].institutions[0].display_name | Hong Kong Polytechnic University |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Chi Fai Cheung |
| authorships[3].is_corresponding | True |
| authorships[3].raw_affiliation_strings | State Key Laboratory of Ultra-Precision Machining Technology, Department Industrial and Systems Engineering, The Hong Kong Polytechnic University, Hong Kong, China |
| authorships[4].author.id | https://openalex.org/A5079101040 |
| authorships[4].author.orcid | https://orcid.org/0000-0002-2329-8634 |
| authorships[4].author.display_name | Pai Zheng |
| authorships[4].countries | HK |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I14243506 |
| authorships[4].affiliations[0].raw_affiliation_string | State Key Laboratory of Ultra-Precision Machining Technology, Department Industrial and Systems Engineering, The Hong Kong Polytechnic University, Hong Kong, China |
| authorships[4].institutions[0].id | https://openalex.org/I14243506 |
| authorships[4].institutions[0].ror | https://ror.org/0030zas98 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I14243506 |
| authorships[4].institutions[0].country_code | HK |
| authorships[4].institutions[0].display_name | Hong Kong Polytechnic University |
| authorships[4].author_position | last |
| authorships[4].raw_author_name | Pai Zheng |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | State Key Laboratory of Ultra-Precision Machining Technology, Department Industrial and Systems Engineering, The Hong Kong Polytechnic University, Hong Kong, China |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://www.mdpi.com/2072-666X/14/11/2016/pdf?version=1698655101 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Surface Roughness Prediction in Ultra-Precision Milling: An Extreme Learning Machine Method with Data Fusion |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T12676 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9991000294685364 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1702 |
| primary_topic.subfield.display_name | Artificial Intelligence |
| primary_topic.display_name | Machine Learning and ELM |
| related_works | https://openalex.org/W2132659060, https://openalex.org/W2031992971, https://openalex.org/W3214791684, https://openalex.org/W2353265673, https://openalex.org/W2152662039, https://openalex.org/W2726747157, https://openalex.org/W2004817612, https://openalex.org/W2010131506, https://openalex.org/W2145797872, https://openalex.org/W4297294309 |
| cited_by_count | 9 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 5 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 4 |
| locations_count | 5 |
| best_oa_location.id | doi:10.3390/mi14112016 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S96702057 |
| best_oa_location.source.issn | 2072-666X |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2072-666X |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | Micromachines |
| best_oa_location.source.host_organization | https://openalex.org/P4310310987 |
| best_oa_location.source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| best_oa_location.source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://www.mdpi.com/2072-666X/14/11/2016/pdf?version=1698655101 |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Micromachines |
| best_oa_location.landing_page_url | https://doi.org/10.3390/mi14112016 |
| primary_location.id | doi:10.3390/mi14112016 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S96702057 |
| primary_location.source.issn | 2072-666X |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2072-666X |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | Micromachines |
| primary_location.source.host_organization | https://openalex.org/P4310310987 |
| primary_location.source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| primary_location.source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://www.mdpi.com/2072-666X/14/11/2016/pdf?version=1698655101 |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Micromachines |
| primary_location.landing_page_url | https://doi.org/10.3390/mi14112016 |
| publication_date | 2023-10-29 |
| publication_year | 2023 |
| referenced_works | https://openalex.org/W2084545246, https://openalex.org/W3096157705, https://openalex.org/W2626230219, https://openalex.org/W1824158590, https://openalex.org/W2068568515, https://openalex.org/W2892439871, https://openalex.org/W2038338100, https://openalex.org/W3097973766, https://openalex.org/W2782812883, https://openalex.org/W2809317444, https://openalex.org/W3040832198, https://openalex.org/W2994602700, https://openalex.org/W827153094, https://openalex.org/W1978618432, https://openalex.org/W2052876121, https://openalex.org/W3119558728, https://openalex.org/W2938736450, https://openalex.org/W4366982726, https://openalex.org/W2111072639, https://openalex.org/W3005261351, https://openalex.org/W6644481283, https://openalex.org/W2952580834, https://openalex.org/W1978097001 |
| referenced_works_count | 23 |
| abstract_inverted_index.a | 107 |
| abstract_inverted_index.s | 110 |
| abstract_inverted_index.18 | 109 |
| abstract_inverted_index.An | 62 |
| abstract_inverted_index.By | 38 |
| abstract_inverted_index.It | 94 |
| abstract_inverted_index.an | 96 |
| abstract_inverted_index.in | 16, 90 |
| abstract_inverted_index.of | 5, 32, 103 |
| abstract_inverted_index.on | 52 |
| abstract_inverted_index.to | 56, 70 |
| abstract_inverted_index.ELM | 59, 75, 82 |
| abstract_inverted_index.The | 77 |
| abstract_inverted_index.and | 27, 46, 68 |
| abstract_inverted_index.are | 50 |
| abstract_inverted_index.for | 12, 111 |
| abstract_inverted_index.low | 98 |
| abstract_inverted_index.our | 72 |
| abstract_inverted_index.the | 3, 6, 20, 28, 33, 43, 53, 81 |
| abstract_inverted_index.use | 4 |
| abstract_inverted_index.was | 66 |
| abstract_inverted_index.1.6% | 104 |
| abstract_inverted_index.This | 0 |
| abstract_inverted_index.data | 49, 84 |
| abstract_inverted_index.fast | 29 |
| abstract_inverted_index.mean | 99 |
| abstract_inverted_index.mere | 108 |
| abstract_inverted_index.show | 79 |
| abstract_inverted_index.that | 80 |
| abstract_inverted_index.with | 24, 83 |
| abstract_inverted_index.(ELM) | 10 |
| abstract_inverted_index.error | 102 |
| abstract_inverted_index.force | 47 |
| abstract_inverted_index.fused | 51 |
| abstract_inverted_index.level | 55 |
| abstract_inverted_index.model | 112 |
| abstract_inverted_index.other | 87 |
| abstract_inverted_index.paper | 1 |
| abstract_inverted_index.small | 25 |
| abstract_inverted_index.speed | 31 |
| abstract_inverted_index.while | 105 |
| abstract_inverted_index.fusion | 85 |
| abstract_inverted_index.signal | 48 |
| abstract_inverted_index.verify | 71 |
| abstract_inverted_index.ability | 23 |
| abstract_inverted_index.extreme | 7, 34 |
| abstract_inverted_index.feature | 54 |
| abstract_inverted_index.fitting | 22 |
| abstract_inverted_index.further | 57 |
| abstract_inverted_index.improve | 58 |
| abstract_inverted_index.machine | 9, 36 |
| abstract_inverted_index.method. | 37, 76 |
| abstract_inverted_index.methods | 89 |
| abstract_inverted_index.milling | 64 |
| abstract_inverted_index.results | 78 |
| abstract_inverted_index.surface | 13, 91 |
| abstract_inverted_index.absolute | 100 |
| abstract_inverted_index.abundant | 40 |
| abstract_inverted_index.achieves | 95 |
| abstract_inverted_index.approach | 11 |
| abstract_inverted_index.datasets | 26 |
| abstract_inverted_index.designed | 67 |
| abstract_inverted_index.learning | 8, 30, 35 |
| abstract_inverted_index.milling, | 18 |
| abstract_inverted_index.pioneers | 2 |
| abstract_inverted_index.proposed | 73 |
| abstract_inverted_index.accuracy. | 61 |
| abstract_inverted_index.conducted | 69 |
| abstract_inverted_index.excellent | 21 |
| abstract_inverted_index.machining | 41, 44 |
| abstract_inverted_index.providing | 39 |
| abstract_inverted_index.requiring | 106 |
| abstract_inverted_index.roughness | 14, 92 |
| abstract_inverted_index.training. | 113 |
| abstract_inverted_index.experiment | 65 |
| abstract_inverted_index.leveraging | 19 |
| abstract_inverted_index.parameters | 45 |
| abstract_inverted_index.percentage | 101 |
| abstract_inverted_index.prediction | 15, 60 |
| abstract_inverted_index.outperforms | 86 |
| abstract_inverted_index.prediction. | 93 |
| abstract_inverted_index.impressively | 97 |
| abstract_inverted_index.information, | 42 |
| abstract_inverted_index.state-of-art | 88 |
| abstract_inverted_index.ultra-precision | 17, 63 |
| abstract_inverted_index.data-fusion-based | 74 |
| cited_by_percentile_year.max | 98 |
| cited_by_percentile_year.min | 97 |
| corresponding_author_ids | https://openalex.org/A5050481473, https://openalex.org/A5080086653 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 5 |
| corresponding_institution_ids | https://openalex.org/I14243506 |
| citation_normalized_percentile.value | 0.88553079 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |