Surrogate Data Models: Interpreting Large-scale Machine Learning Crisis Prediction Models Article Swipe
Maksym Ivanyna
,
Ritong Qu
,
Ruofei Hu
,
Cheng Zhong
,
Jorge A. Chan‐Lau
·
YOU?
·
· 2023
· Open Access
·
· DOI: https://doi.org/10.5089/9798400234828.001
YOU?
·
· 2023
· Open Access
·
· DOI: https://doi.org/10.5089/9798400234828.001
Machine learning models are becoming increasingly important in the prediction of economic crises. The models, however, use datasets comprising a large number of predictors (features) which impairs model interpretability and their ability to provide adequate guidance in the design of crisis prevention and mitigation policies. This paper introduces surrogate data models as dimensionality reduction tools in large-scale crisis prediction models. The appropriateness of this approach is assessed by their application to large-scale crisis prediction models developed at the IMF. The results are consistent with economic intuition and validate the use of surrogates as interpretability tools.
Related Topics
Concepts
Metadata
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.5089/9798400234828.001
- https://www.elibrary.imf.org/downloadpdf/journals/001/2023/041/001.2023.issue-041-en.xml
- OA Status
- diamond
- Cited By
- 8
- References
- 63
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4322745652
All OpenAlex metadata
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4322745652Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.5089/9798400234828.001Digital Object Identifier
- Title
-
Surrogate Data Models: Interpreting Large-scale Machine Learning Crisis Prediction ModelsWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2023Year of publication
- Publication date
-
2023-02-01Full publication date if available
- Authors
-
Maksym Ivanyna, Ritong Qu, Ruofei Hu, Cheng Zhong, Jorge A. Chan‐LauList of authors in order
- Landing page
-
https://doi.org/10.5089/9798400234828.001Publisher landing page
- PDF URL
-
https://www.elibrary.imf.org/downloadpdf/journals/001/2023/041/001.2023.issue-041-en.xmlDirect link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
diamondOpen access status per OpenAlex
- OA URL
-
https://www.elibrary.imf.org/downloadpdf/journals/001/2023/041/001.2023.issue-041-en.xmlDirect OA link when available
- Concepts
-
Scale (ratio), Computer science, Machine learning, Artificial intelligence, Geography, CartographyTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
8Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 1, 2024: 5, 2023: 2Per-year citation counts (last 5 years)
- References (count)
-
63Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4322745652 |
|---|---|
| doi | https://doi.org/10.5089/9798400234828.001 |
| ids.doi | https://doi.org/10.5089/9798400234828.001 |
| ids.openalex | https://openalex.org/W4322745652 |
| fwci | 1.99082481 |
| type | article |
| title | Surrogate Data Models: Interpreting Large-scale Machine Learning Crisis Prediction Models |
| biblio.issue | 041 |
| biblio.volume | 2023 |
| biblio.last_page | 1 |
| biblio.first_page | 1 |
| topics[0].id | https://openalex.org/T14470 |
| topics[0].field.id | https://openalex.org/fields/22 |
| topics[0].field.display_name | Engineering |
| topics[0].score | 0.5146999955177307 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2207 |
| topics[0].subfield.display_name | Control and Systems Engineering |
| topics[0].display_name | Advanced Data Processing Techniques |
| topics[1].id | https://openalex.org/T12127 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.5063999891281128 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1705 |
| topics[1].subfield.display_name | Computer Networks and Communications |
| topics[1].display_name | Software System Performance and Reliability |
| topics[2].id | https://openalex.org/T11807 |
| topics[2].field.id | https://openalex.org/fields/22 |
| topics[2].field.display_name | Engineering |
| topics[2].score | 0.4480000138282776 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2205 |
| topics[2].subfield.display_name | Civil and Structural Engineering |
| topics[2].display_name | Infrastructure Resilience and Vulnerability Analysis |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C2778755073 |
| concepts[0].level | 2 |
| concepts[0].score | 0.584396243095398 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q10858537 |
| concepts[0].display_name | Scale (ratio) |
| concepts[1].id | https://openalex.org/C41008148 |
| concepts[1].level | 0 |
| concepts[1].score | 0.5208849906921387 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[1].display_name | Computer science |
| concepts[2].id | https://openalex.org/C119857082 |
| concepts[2].level | 1 |
| concepts[2].score | 0.5096321105957031 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[2].display_name | Machine learning |
| concepts[3].id | https://openalex.org/C154945302 |
| concepts[3].level | 1 |
| concepts[3].score | 0.4708261787891388 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[3].display_name | Artificial intelligence |
| concepts[4].id | https://openalex.org/C205649164 |
| concepts[4].level | 0 |
| concepts[4].score | 0.10815030336380005 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q1071 |
| concepts[4].display_name | Geography |
| concepts[5].id | https://openalex.org/C58640448 |
| concepts[5].level | 1 |
| concepts[5].score | 0.08916899561882019 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q42515 |
| concepts[5].display_name | Cartography |
| keywords[0].id | https://openalex.org/keywords/scale |
| keywords[0].score | 0.584396243095398 |
| keywords[0].display_name | Scale (ratio) |
| keywords[1].id | https://openalex.org/keywords/computer-science |
| keywords[1].score | 0.5208849906921387 |
| keywords[1].display_name | Computer science |
| keywords[2].id | https://openalex.org/keywords/machine-learning |
| keywords[2].score | 0.5096321105957031 |
| keywords[2].display_name | Machine learning |
| keywords[3].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[3].score | 0.4708261787891388 |
| keywords[3].display_name | Artificial intelligence |
| keywords[4].id | https://openalex.org/keywords/geography |
| keywords[4].score | 0.10815030336380005 |
| keywords[4].display_name | Geography |
| keywords[5].id | https://openalex.org/keywords/cartography |
| keywords[5].score | 0.08916899561882019 |
| keywords[5].display_name | Cartography |
| language | en |
| locations[0].id | doi:10.5089/9798400234828.001 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4210171147 |
| locations[0].source.issn | 1018-5941, 2227-8885 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 1018-5941 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | IMF Working Paper |
| locations[0].source.host_organization | https://openalex.org/P4310316166 |
| locations[0].source.host_organization_name | International Monetary Fund |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310316166, https://openalex.org/P4310321776 |
| locations[0].source.host_organization_lineage_names | International Monetary Fund, United Nations |
| locations[0].license | |
| locations[0].pdf_url | https://www.elibrary.imf.org/downloadpdf/journals/001/2023/041/001.2023.issue-041-en.xml |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | IMF Working Papers |
| locations[0].landing_page_url | https://doi.org/10.5089/9798400234828.001 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5108831467 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Maksym Ivanyna |
| authorships[0].countries | US |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I1310145890 |
| authorships[0].affiliations[0].raw_affiliation_string | International Monetary Fund |
| authorships[0].institutions[0].id | https://openalex.org/I1310145890 |
| authorships[0].institutions[0].ror | https://ror.org/05m4rmw09 |
| authorships[0].institutions[0].type | other |
| authorships[0].institutions[0].lineage | https://openalex.org/I1310145890 |
| authorships[0].institutions[0].country_code | US |
| authorships[0].institutions[0].display_name | International Monetary Fund |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Maksym Ivanyna |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | International Monetary Fund |
| authorships[1].author.id | https://openalex.org/A5089056186 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-1312-5852 |
| authorships[1].author.display_name | Ritong Qu |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Ritong Qu |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5102776456 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-4365-5723 |
| authorships[2].author.display_name | Ruofei Hu |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Ruofei Hu |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5100616103 |
| authorships[3].author.orcid | https://orcid.org/0000-0003-1852-5860 |
| authorships[3].author.display_name | Cheng Zhong |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Cheng Zhong |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5110625335 |
| authorships[4].author.orcid | |
| authorships[4].author.display_name | Jorge A. Chan‐Lau |
| authorships[4].author_position | last |
| authorships[4].raw_author_name | Jorge Chan-Lau |
| authorships[4].is_corresponding | False |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://www.elibrary.imf.org/downloadpdf/journals/001/2023/041/001.2023.issue-041-en.xml |
| open_access.oa_status | diamond |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Surrogate Data Models: Interpreting Large-scale Machine Learning Crisis Prediction Models |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T14470 |
| primary_topic.field.id | https://openalex.org/fields/22 |
| primary_topic.field.display_name | Engineering |
| primary_topic.score | 0.5146999955177307 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2207 |
| primary_topic.subfield.display_name | Control and Systems Engineering |
| primary_topic.display_name | Advanced Data Processing Techniques |
| related_works | https://openalex.org/W2961085424, https://openalex.org/W4306674287, https://openalex.org/W4224009465, https://openalex.org/W4286629047, https://openalex.org/W4306321456, https://openalex.org/W4285260836, https://openalex.org/W3046775127, https://openalex.org/W3170094116, https://openalex.org/W4205958290, https://openalex.org/W4386462264 |
| cited_by_count | 8 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 1 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 5 |
| counts_by_year[2].year | 2023 |
| counts_by_year[2].cited_by_count | 2 |
| locations_count | 1 |
| best_oa_location.id | doi:10.5089/9798400234828.001 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4210171147 |
| best_oa_location.source.issn | 1018-5941, 2227-8885 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 1018-5941 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | IMF Working Paper |
| best_oa_location.source.host_organization | https://openalex.org/P4310316166 |
| best_oa_location.source.host_organization_name | International Monetary Fund |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310316166, https://openalex.org/P4310321776 |
| best_oa_location.source.host_organization_lineage_names | International Monetary Fund, United Nations |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://www.elibrary.imf.org/downloadpdf/journals/001/2023/041/001.2023.issue-041-en.xml |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | IMF Working Papers |
| best_oa_location.landing_page_url | https://doi.org/10.5089/9798400234828.001 |
| primary_location.id | doi:10.5089/9798400234828.001 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4210171147 |
| primary_location.source.issn | 1018-5941, 2227-8885 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 1018-5941 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | IMF Working Paper |
| primary_location.source.host_organization | https://openalex.org/P4310316166 |
| primary_location.source.host_organization_name | International Monetary Fund |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310316166, https://openalex.org/P4310321776 |
| primary_location.source.host_organization_lineage_names | International Monetary Fund, United Nations |
| primary_location.license | |
| primary_location.pdf_url | https://www.elibrary.imf.org/downloadpdf/journals/001/2023/041/001.2023.issue-041-en.xml |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | IMF Working Papers |
| primary_location.landing_page_url | https://doi.org/10.5089/9798400234828.001 |
| publication_date | 2023-02-01 |
| publication_year | 2023 |
| referenced_works | https://openalex.org/W2091801169, https://openalex.org/W6654867056, https://openalex.org/W3000526998, https://openalex.org/W4293209852, https://openalex.org/W3101981467, https://openalex.org/W6671502712, https://openalex.org/W3175185832, https://openalex.org/W3184769952, https://openalex.org/W3084193463, https://openalex.org/W2020046435, https://openalex.org/W6678886323, https://openalex.org/W6747412257, https://openalex.org/W7018999146, https://openalex.org/W3120552598, https://openalex.org/W2059893430, https://openalex.org/W6676960219, https://openalex.org/W6761541970, https://openalex.org/W4290998497, https://openalex.org/W2473993990, https://openalex.org/W3167461891, https://openalex.org/W1875075886, https://openalex.org/W2509518867, https://openalex.org/W4205820386, https://openalex.org/W6765729480, https://openalex.org/W3007549203, https://openalex.org/W2959587146, https://openalex.org/W2618851150, https://openalex.org/W7019859633, https://openalex.org/W7075713926, https://openalex.org/W6817934128, https://openalex.org/W2516809705, https://openalex.org/W2788403449, https://openalex.org/W2757281979, https://openalex.org/W6722226382, https://openalex.org/W2529086294, https://openalex.org/W6730502965, https://openalex.org/W2786881127, https://openalex.org/W2979358647, https://openalex.org/W4255126580, https://openalex.org/W2077707178, https://openalex.org/W1595797227, https://openalex.org/W2113456190, https://openalex.org/W4297821991, https://openalex.org/W2617799811, https://openalex.org/W4244620108, https://openalex.org/W4288417842, https://openalex.org/W3166788073, https://openalex.org/W4287864753, https://openalex.org/W2962862931, https://openalex.org/W2963492126, https://openalex.org/W4210409888, https://openalex.org/W2125151258, https://openalex.org/W3122785968, https://openalex.org/W2556340658, https://openalex.org/W4212855138, https://openalex.org/W4210576986, https://openalex.org/W2963463132, https://openalex.org/W2019176983, https://openalex.org/W2904066555, https://openalex.org/W4385884461, https://openalex.org/W3124999132, https://openalex.org/W2101750043, https://openalex.org/W2420245003 |
| referenced_works_count | 63 |
| abstract_inverted_index.a | 19 |
| abstract_inverted_index.as | 51, 92 |
| abstract_inverted_index.at | 76 |
| abstract_inverted_index.by | 67 |
| abstract_inverted_index.in | 7, 36, 55 |
| abstract_inverted_index.is | 65 |
| abstract_inverted_index.of | 10, 22, 39, 62, 90 |
| abstract_inverted_index.to | 32, 70 |
| abstract_inverted_index.The | 13, 60, 79 |
| abstract_inverted_index.and | 29, 42, 86 |
| abstract_inverted_index.are | 3, 81 |
| abstract_inverted_index.the | 8, 37, 77, 88 |
| abstract_inverted_index.use | 16, 89 |
| abstract_inverted_index.IMF. | 78 |
| abstract_inverted_index.This | 45 |
| abstract_inverted_index.data | 49 |
| abstract_inverted_index.this | 63 |
| abstract_inverted_index.with | 83 |
| abstract_inverted_index.large | 20 |
| abstract_inverted_index.model | 27 |
| abstract_inverted_index.paper | 46 |
| abstract_inverted_index.their | 30, 68 |
| abstract_inverted_index.tools | 54 |
| abstract_inverted_index.which | 25 |
| abstract_inverted_index.crisis | 40, 57, 72 |
| abstract_inverted_index.design | 38 |
| abstract_inverted_index.models | 2, 50, 74 |
| abstract_inverted_index.number | 21 |
| abstract_inverted_index.tools. | 94 |
| abstract_inverted_index.Machine | 0 |
| abstract_inverted_index.ability | 31 |
| abstract_inverted_index.crises. | 12 |
| abstract_inverted_index.impairs | 26 |
| abstract_inverted_index.models, | 14 |
| abstract_inverted_index.models. | 59 |
| abstract_inverted_index.provide | 33 |
| abstract_inverted_index.results | 80 |
| abstract_inverted_index.adequate | 34 |
| abstract_inverted_index.approach | 64 |
| abstract_inverted_index.assessed | 66 |
| abstract_inverted_index.becoming | 4 |
| abstract_inverted_index.datasets | 17 |
| abstract_inverted_index.economic | 11, 84 |
| abstract_inverted_index.guidance | 35 |
| abstract_inverted_index.however, | 15 |
| abstract_inverted_index.learning | 1 |
| abstract_inverted_index.validate | 87 |
| abstract_inverted_index.developed | 75 |
| abstract_inverted_index.important | 6 |
| abstract_inverted_index.intuition | 85 |
| abstract_inverted_index.policies. | 44 |
| abstract_inverted_index.reduction | 53 |
| abstract_inverted_index.surrogate | 48 |
| abstract_inverted_index.(features) | 24 |
| abstract_inverted_index.comprising | 18 |
| abstract_inverted_index.consistent | 82 |
| abstract_inverted_index.introduces | 47 |
| abstract_inverted_index.mitigation | 43 |
| abstract_inverted_index.prediction | 9, 58, 73 |
| abstract_inverted_index.predictors | 23 |
| abstract_inverted_index.prevention | 41 |
| abstract_inverted_index.surrogates | 91 |
| abstract_inverted_index.application | 69 |
| abstract_inverted_index.large-scale | 56, 71 |
| abstract_inverted_index.increasingly | 5 |
| abstract_inverted_index.dimensionality | 52 |
| abstract_inverted_index.appropriateness | 61 |
| abstract_inverted_index.interpretability | 28, 93 |
| cited_by_percentile_year.max | 98 |
| cited_by_percentile_year.min | 91 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 5 |
| citation_normalized_percentile.value | 0.83910124 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |