Survey of Deep Learning and Machine Learning Approaches for Major Depressive Disorder Detection Using EEG Data Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.1155/jece/6277690
Major depressive disorder (MDD) is a common mental health illness in which the affected person experiences chronic sadness and loses interest in activities. Traditionally, MDD is diagnosed using clinical examinations and self‐report questionnaires, both of which are subjective and susceptible to error. Recent advances in electroencephalogram (EEG) analysis have combined physiological markers with machine learning (ML) and deep learning (DL) techniques, offering objective, noninvasive alternatives for MDD detection. Despite numerous studies leveraging ML and DL for EEG‐based MDD identification, there is a lack of comprehensive analysis that critically evaluates the strengths and limitations of these methods. This survey paper addresses this gap by analyzing 31 studies published between 2020 and 2024, focusing on critical aspects such as dataset size, electrode configurations, preprocessing techniques, feature engineering, and the ML/DL models employed. The paper presents a taxonomy that categorizes the methods used across various studies for each step of the EEG‐based depression detection pipeline and an analysis of the critical dimensions required for detecting depression based on the comprehensive analysis of dataset, suitable EEG electrode configuration, effective preprocessing techniques, and feature engineering for different model types. With such insights, this survey aims to guide future research and improve the accuracy and reliability of EEG‐based MDD detection.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1155/jece/6277690
- https://onlinelibrary.wiley.com/doi/pdfdirect/10.1155/jece/6277690
- OA Status
- gold
- Cited By
- 1
- References
- 68
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4411346906
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4411346906Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1155/jece/6277690Digital Object Identifier
- Title
-
Survey of Deep Learning and Machine Learning Approaches for Major Depressive Disorder Detection Using EEG DataWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-01-01Full publication date if available
- Authors
-
Sumathi Balakrishnan, Raja Kumar Murugesan, Eng Lye Lim, Amna Faisal, Humaira AshrafList of authors in order
- Landing page
-
https://doi.org/10.1155/jece/6277690Publisher landing page
- PDF URL
-
https://onlinelibrary.wiley.com/doi/pdfdirect/10.1155/jece/6277690Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://onlinelibrary.wiley.com/doi/pdfdirect/10.1155/jece/6277690Direct OA link when available
- Concepts
-
Electroencephalography, Major depressive disorder, Artificial intelligence, Deep learning, Computer science, Machine learning, Psychology, Pattern recognition (psychology), Psychiatry, CognitionTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
1Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 1Per-year citation counts (last 5 years)
- References (count)
-
68Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4411346906 |
|---|---|
| doi | https://doi.org/10.1155/jece/6277690 |
| ids.doi | https://doi.org/10.1155/jece/6277690 |
| ids.openalex | https://openalex.org/W4411346906 |
| fwci | 4.0838049 |
| type | article |
| title | Survey of Deep Learning and Machine Learning Approaches for Major Depressive Disorder Detection Using EEG Data |
| awards[0].id | https://openalex.org/G5376460778 |
| awards[0].funder_id | https://openalex.org/F4320326417 |
| awards[0].display_name | |
| awards[0].funder_award_id | TIRGS-ILG/1/2024/SCS/001 |
| awards[0].funder_display_name | Taylor’s University |
| biblio.issue | 1 |
| biblio.volume | 2025 |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10429 |
| topics[0].field.id | https://openalex.org/fields/28 |
| topics[0].field.display_name | Neuroscience |
| topics[0].score | 0.9991999864578247 |
| topics[0].domain.id | https://openalex.org/domains/1 |
| topics[0].domain.display_name | Life Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2805 |
| topics[0].subfield.display_name | Cognitive Neuroscience |
| topics[0].display_name | EEG and Brain-Computer Interfaces |
| topics[1].id | https://openalex.org/T10241 |
| topics[1].field.id | https://openalex.org/fields/28 |
| topics[1].field.display_name | Neuroscience |
| topics[1].score | 0.9968000054359436 |
| topics[1].domain.id | https://openalex.org/domains/1 |
| topics[1].domain.display_name | Life Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2805 |
| topics[1].subfield.display_name | Cognitive Neuroscience |
| topics[1].display_name | Functional Brain Connectivity Studies |
| topics[2].id | https://openalex.org/T11021 |
| topics[2].field.id | https://openalex.org/fields/27 |
| topics[2].field.display_name | Medicine |
| topics[2].score | 0.9750999808311462 |
| topics[2].domain.id | https://openalex.org/domains/4 |
| topics[2].domain.display_name | Health Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2705 |
| topics[2].subfield.display_name | Cardiology and Cardiovascular Medicine |
| topics[2].display_name | ECG Monitoring and Analysis |
| funders[0].id | https://openalex.org/F4320326417 |
| funders[0].ror | https://ror.org/0498pcx51 |
| funders[0].display_name | Taylor’s University |
| is_xpac | False |
| apc_list.value | 1400 |
| apc_list.currency | USD |
| apc_list.value_usd | 1400 |
| apc_paid.value | 1400 |
| apc_paid.currency | USD |
| apc_paid.value_usd | 1400 |
| concepts[0].id | https://openalex.org/C522805319 |
| concepts[0].level | 2 |
| concepts[0].score | 0.7300410866737366 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q179965 |
| concepts[0].display_name | Electroencephalography |
| concepts[1].id | https://openalex.org/C2780051608 |
| concepts[1].level | 3 |
| concepts[1].score | 0.6089601516723633 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q42844 |
| concepts[1].display_name | Major depressive disorder |
| concepts[2].id | https://openalex.org/C154945302 |
| concepts[2].level | 1 |
| concepts[2].score | 0.568673849105835 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[2].display_name | Artificial intelligence |
| concepts[3].id | https://openalex.org/C108583219 |
| concepts[3].level | 2 |
| concepts[3].score | 0.5619865655899048 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q197536 |
| concepts[3].display_name | Deep learning |
| concepts[4].id | https://openalex.org/C41008148 |
| concepts[4].level | 0 |
| concepts[4].score | 0.4734503924846649 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[4].display_name | Computer science |
| concepts[5].id | https://openalex.org/C119857082 |
| concepts[5].level | 1 |
| concepts[5].score | 0.39457863569259644 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[5].display_name | Machine learning |
| concepts[6].id | https://openalex.org/C15744967 |
| concepts[6].level | 0 |
| concepts[6].score | 0.3886137306690216 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q9418 |
| concepts[6].display_name | Psychology |
| concepts[7].id | https://openalex.org/C153180895 |
| concepts[7].level | 2 |
| concepts[7].score | 0.3548532724380493 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[7].display_name | Pattern recognition (psychology) |
| concepts[8].id | https://openalex.org/C118552586 |
| concepts[8].level | 1 |
| concepts[8].score | 0.2104070484638214 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q7867 |
| concepts[8].display_name | Psychiatry |
| concepts[9].id | https://openalex.org/C169900460 |
| concepts[9].level | 2 |
| concepts[9].score | 0.0 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q2200417 |
| concepts[9].display_name | Cognition |
| keywords[0].id | https://openalex.org/keywords/electroencephalography |
| keywords[0].score | 0.7300410866737366 |
| keywords[0].display_name | Electroencephalography |
| keywords[1].id | https://openalex.org/keywords/major-depressive-disorder |
| keywords[1].score | 0.6089601516723633 |
| keywords[1].display_name | Major depressive disorder |
| keywords[2].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[2].score | 0.568673849105835 |
| keywords[2].display_name | Artificial intelligence |
| keywords[3].id | https://openalex.org/keywords/deep-learning |
| keywords[3].score | 0.5619865655899048 |
| keywords[3].display_name | Deep learning |
| keywords[4].id | https://openalex.org/keywords/computer-science |
| keywords[4].score | 0.4734503924846649 |
| keywords[4].display_name | Computer science |
| keywords[5].id | https://openalex.org/keywords/machine-learning |
| keywords[5].score | 0.39457863569259644 |
| keywords[5].display_name | Machine learning |
| keywords[6].id | https://openalex.org/keywords/psychology |
| keywords[6].score | 0.3886137306690216 |
| keywords[6].display_name | Psychology |
| keywords[7].id | https://openalex.org/keywords/pattern-recognition |
| keywords[7].score | 0.3548532724380493 |
| keywords[7].display_name | Pattern recognition (psychology) |
| keywords[8].id | https://openalex.org/keywords/psychiatry |
| keywords[8].score | 0.2104070484638214 |
| keywords[8].display_name | Psychiatry |
| language | en |
| locations[0].id | doi:10.1155/jece/6277690 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S174662166 |
| locations[0].source.issn | 2090-0147, 2090-0155 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2090-0147 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | Journal of Electrical and Computer Engineering |
| locations[0].source.host_organization | https://openalex.org/P4310319869 |
| locations[0].source.host_organization_name | Hindawi Publishing Corporation |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310319869 |
| locations[0].source.host_organization_lineage_names | Hindawi Publishing Corporation |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1155/jece/6277690 |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Journal of Electrical and Computer Engineering |
| locations[0].landing_page_url | https://doi.org/10.1155/jece/6277690 |
| locations[1].id | pmh:oai:doaj.org/article:9d21304e820b4d35967398efce4c4126 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306401280 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[1].source.host_organization | |
| locations[1].source.host_organization_name | |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | Journal of Electrical and Computer Engineering, Vol 2025 (2025) |
| locations[1].landing_page_url | https://doaj.org/article/9d21304e820b4d35967398efce4c4126 |
| indexed_in | crossref, doaj |
| authorships[0].author.id | https://openalex.org/A5103031148 |
| authorships[0].author.orcid | https://orcid.org/0009-0007-8721-7112 |
| authorships[0].author.display_name | Sumathi Balakrishnan |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Sumathi Balakrishnan |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5062919173 |
| authorships[1].author.orcid | https://orcid.org/0000-0001-9500-1361 |
| authorships[1].author.display_name | Raja Kumar Murugesan |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Raja Kumar Murugesan |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5000099249 |
| authorships[2].author.orcid | https://orcid.org/0009-0001-3413-9102 |
| authorships[2].author.display_name | Eng Lye Lim |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Eng Lye Lim |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5108996480 |
| authorships[3].author.orcid | |
| authorships[3].author.display_name | Amna Faisal |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Amna Faisal |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5003462581 |
| authorships[4].author.orcid | https://orcid.org/0000-0001-5067-3172 |
| authorships[4].author.display_name | Humaira Ashraf |
| authorships[4].author_position | last |
| authorships[4].raw_author_name | Humaira Ashraf |
| authorships[4].is_corresponding | False |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1155/jece/6277690 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Survey of Deep Learning and Machine Learning Approaches for Major Depressive Disorder Detection Using EEG Data |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10429 |
| primary_topic.field.id | https://openalex.org/fields/28 |
| primary_topic.field.display_name | Neuroscience |
| primary_topic.score | 0.9991999864578247 |
| primary_topic.domain.id | https://openalex.org/domains/1 |
| primary_topic.domain.display_name | Life Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2805 |
| primary_topic.subfield.display_name | Cognitive Neuroscience |
| primary_topic.display_name | EEG and Brain-Computer Interfaces |
| related_works | https://openalex.org/W2922348724, https://openalex.org/W200322357, https://openalex.org/W2130428257, https://openalex.org/W4308951944, https://openalex.org/W2057366091, https://openalex.org/W4312960290, https://openalex.org/W2049513647, https://openalex.org/W2988848585, https://openalex.org/W4233722919, https://openalex.org/W4380075502 |
| cited_by_count | 1 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 1 |
| locations_count | 2 |
| best_oa_location.id | doi:10.1155/jece/6277690 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S174662166 |
| best_oa_location.source.issn | 2090-0147, 2090-0155 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2090-0147 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | Journal of Electrical and Computer Engineering |
| best_oa_location.source.host_organization | https://openalex.org/P4310319869 |
| best_oa_location.source.host_organization_name | Hindawi Publishing Corporation |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310319869 |
| best_oa_location.source.host_organization_lineage_names | Hindawi Publishing Corporation |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1155/jece/6277690 |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Journal of Electrical and Computer Engineering |
| best_oa_location.landing_page_url | https://doi.org/10.1155/jece/6277690 |
| primary_location.id | doi:10.1155/jece/6277690 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S174662166 |
| primary_location.source.issn | 2090-0147, 2090-0155 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2090-0147 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | Journal of Electrical and Computer Engineering |
| primary_location.source.host_organization | https://openalex.org/P4310319869 |
| primary_location.source.host_organization_name | Hindawi Publishing Corporation |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310319869 |
| primary_location.source.host_organization_lineage_names | Hindawi Publishing Corporation |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1155/jece/6277690 |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Journal of Electrical and Computer Engineering |
| primary_location.landing_page_url | https://doi.org/10.1155/jece/6277690 |
| publication_date | 2025-01-01 |
| publication_year | 2025 |
| referenced_works | https://openalex.org/W2891712045, https://openalex.org/W3003417734, https://openalex.org/W2957822178, https://openalex.org/W2788029111, https://openalex.org/W4315652388, https://openalex.org/W2584523198, https://openalex.org/W3087001700, https://openalex.org/W2922329448, https://openalex.org/W3208882172, https://openalex.org/W4280517209, https://openalex.org/W3129234057, https://openalex.org/W2783339817, https://openalex.org/W4225619919, https://openalex.org/W3038602659, https://openalex.org/W2917094047, https://openalex.org/W4200029516, https://openalex.org/W4290838960, https://openalex.org/W3160566128, https://openalex.org/W4249154572, https://openalex.org/W4387007580, https://openalex.org/W2973194277, https://openalex.org/W2526864005, https://openalex.org/W2521552716, https://openalex.org/W3105250175, https://openalex.org/W4388304090, https://openalex.org/W2781670079, https://openalex.org/W3116201721, https://openalex.org/W4205622176, https://openalex.org/W4390948228, https://openalex.org/W3003385856, https://openalex.org/W3121117531, https://openalex.org/W3094097183, https://openalex.org/W3029036868, https://openalex.org/W4367163945, https://openalex.org/W3044957499, https://openalex.org/W3043456897, https://openalex.org/W3120136139, https://openalex.org/W4293324529, https://openalex.org/W4312222040, https://openalex.org/W3159456745, https://openalex.org/W4392188695, https://openalex.org/W4324149073, https://openalex.org/W4284887989, https://openalex.org/W4310837858, https://openalex.org/W4312891224, https://openalex.org/W4377021644, https://openalex.org/W3131775586, https://openalex.org/W4391819009, https://openalex.org/W4392887552, https://openalex.org/W3126085817, https://openalex.org/W3082549144, https://openalex.org/W4302275554, https://openalex.org/W4393374891, https://openalex.org/W4220805741, https://openalex.org/W4382769645, https://openalex.org/W3157219251, https://openalex.org/W2963355311, https://openalex.org/W4226097197, https://openalex.org/W4377024846, https://openalex.org/W4366821924, https://openalex.org/W2606894917, https://openalex.org/W2797694788, https://openalex.org/W3208936379, https://openalex.org/W4392667270, https://openalex.org/W4225581311, https://openalex.org/W3007627589, https://openalex.org/W410172207, https://openalex.org/W3207856094 |
| referenced_works_count | 68 |
| abstract_inverted_index.a | 5, 81, 133 |
| abstract_inverted_index.31 | 104 |
| abstract_inverted_index.DL | 74 |
| abstract_inverted_index.ML | 72 |
| abstract_inverted_index.an | 153 |
| abstract_inverted_index.as | 116 |
| abstract_inverted_index.by | 102 |
| abstract_inverted_index.in | 10, 21, 44 |
| abstract_inverted_index.is | 4, 25, 80 |
| abstract_inverted_index.of | 34, 83, 93, 146, 155, 168, 200 |
| abstract_inverted_index.on | 112, 164 |
| abstract_inverted_index.to | 40, 190 |
| abstract_inverted_index.EEG | 171 |
| abstract_inverted_index.MDD | 24, 66, 77, 202 |
| abstract_inverted_index.The | 130 |
| abstract_inverted_index.and | 18, 30, 38, 56, 73, 91, 109, 125, 152, 177, 194, 198 |
| abstract_inverted_index.are | 36 |
| abstract_inverted_index.for | 65, 75, 143, 160, 180 |
| abstract_inverted_index.gap | 101 |
| abstract_inverted_index.the | 12, 89, 126, 137, 147, 156, 165, 196 |
| abstract_inverted_index.(DL) | 59 |
| abstract_inverted_index.(ML) | 55 |
| abstract_inverted_index.2020 | 108 |
| abstract_inverted_index.This | 96 |
| abstract_inverted_index.With | 184 |
| abstract_inverted_index.aims | 189 |
| abstract_inverted_index.both | 33 |
| abstract_inverted_index.deep | 57 |
| abstract_inverted_index.each | 144 |
| abstract_inverted_index.have | 48 |
| abstract_inverted_index.lack | 82 |
| abstract_inverted_index.step | 145 |
| abstract_inverted_index.such | 115, 185 |
| abstract_inverted_index.that | 86, 135 |
| abstract_inverted_index.this | 100, 187 |
| abstract_inverted_index.used | 139 |
| abstract_inverted_index.with | 52 |
| abstract_inverted_index.(EEG) | 46 |
| abstract_inverted_index.(MDD) | 3 |
| abstract_inverted_index.2024, | 110 |
| abstract_inverted_index.ML/DL | 127 |
| abstract_inverted_index.Major | 0 |
| abstract_inverted_index.based | 163 |
| abstract_inverted_index.guide | 191 |
| abstract_inverted_index.loses | 19 |
| abstract_inverted_index.model | 182 |
| abstract_inverted_index.paper | 98, 131 |
| abstract_inverted_index.size, | 118 |
| abstract_inverted_index.there | 79 |
| abstract_inverted_index.these | 94 |
| abstract_inverted_index.using | 27 |
| abstract_inverted_index.which | 11, 35 |
| abstract_inverted_index.Recent | 42 |
| abstract_inverted_index.across | 140 |
| abstract_inverted_index.common | 6 |
| abstract_inverted_index.error. | 41 |
| abstract_inverted_index.future | 192 |
| abstract_inverted_index.health | 8 |
| abstract_inverted_index.mental | 7 |
| abstract_inverted_index.models | 128 |
| abstract_inverted_index.person | 14 |
| abstract_inverted_index.survey | 97, 188 |
| abstract_inverted_index.types. | 183 |
| abstract_inverted_index.Despite | 68 |
| abstract_inverted_index.aspects | 114 |
| abstract_inverted_index.between | 107 |
| abstract_inverted_index.chronic | 16 |
| abstract_inverted_index.dataset | 117 |
| abstract_inverted_index.feature | 123, 178 |
| abstract_inverted_index.illness | 9 |
| abstract_inverted_index.improve | 195 |
| abstract_inverted_index.machine | 53 |
| abstract_inverted_index.markers | 51 |
| abstract_inverted_index.methods | 138 |
| abstract_inverted_index.sadness | 17 |
| abstract_inverted_index.studies | 70, 105, 142 |
| abstract_inverted_index.various | 141 |
| abstract_inverted_index.accuracy | 197 |
| abstract_inverted_index.advances | 43 |
| abstract_inverted_index.affected | 13 |
| abstract_inverted_index.analysis | 47, 85, 154, 167 |
| abstract_inverted_index.clinical | 28 |
| abstract_inverted_index.combined | 49 |
| abstract_inverted_index.critical | 113, 157 |
| abstract_inverted_index.dataset, | 169 |
| abstract_inverted_index.disorder | 2 |
| abstract_inverted_index.focusing | 111 |
| abstract_inverted_index.interest | 20 |
| abstract_inverted_index.learning | 54, 58 |
| abstract_inverted_index.methods. | 95 |
| abstract_inverted_index.numerous | 69 |
| abstract_inverted_index.offering | 61 |
| abstract_inverted_index.pipeline | 151 |
| abstract_inverted_index.presents | 132 |
| abstract_inverted_index.required | 159 |
| abstract_inverted_index.research | 193 |
| abstract_inverted_index.suitable | 170 |
| abstract_inverted_index.taxonomy | 134 |
| abstract_inverted_index.addresses | 99 |
| abstract_inverted_index.analyzing | 103 |
| abstract_inverted_index.detecting | 161 |
| abstract_inverted_index.detection | 150 |
| abstract_inverted_index.diagnosed | 26 |
| abstract_inverted_index.different | 181 |
| abstract_inverted_index.effective | 174 |
| abstract_inverted_index.electrode | 119, 172 |
| abstract_inverted_index.employed. | 129 |
| abstract_inverted_index.evaluates | 88 |
| abstract_inverted_index.insights, | 186 |
| abstract_inverted_index.published | 106 |
| abstract_inverted_index.strengths | 90 |
| abstract_inverted_index.critically | 87 |
| abstract_inverted_index.depression | 149, 162 |
| abstract_inverted_index.depressive | 1 |
| abstract_inverted_index.detection. | 67, 203 |
| abstract_inverted_index.dimensions | 158 |
| abstract_inverted_index.leveraging | 71 |
| abstract_inverted_index.objective, | 62 |
| abstract_inverted_index.subjective | 37 |
| abstract_inverted_index.EEG‐based | 76, 148, 201 |
| abstract_inverted_index.activities. | 22 |
| abstract_inverted_index.categorizes | 136 |
| abstract_inverted_index.engineering | 179 |
| abstract_inverted_index.experiences | 15 |
| abstract_inverted_index.limitations | 92 |
| abstract_inverted_index.noninvasive | 63 |
| abstract_inverted_index.reliability | 199 |
| abstract_inverted_index.susceptible | 39 |
| abstract_inverted_index.techniques, | 60, 122, 176 |
| abstract_inverted_index.alternatives | 64 |
| abstract_inverted_index.engineering, | 124 |
| abstract_inverted_index.examinations | 29 |
| abstract_inverted_index.comprehensive | 84, 166 |
| abstract_inverted_index.physiological | 50 |
| abstract_inverted_index.preprocessing | 121, 175 |
| abstract_inverted_index.self‐report | 31 |
| abstract_inverted_index.Traditionally, | 23 |
| abstract_inverted_index.configuration, | 173 |
| abstract_inverted_index.configurations, | 120 |
| abstract_inverted_index.identification, | 78 |
| abstract_inverted_index.questionnaires, | 32 |
| abstract_inverted_index.electroencephalogram | 45 |
| cited_by_percentile_year.max | 95 |
| cited_by_percentile_year.min | 91 |
| countries_distinct_count | 0 |
| institutions_distinct_count | 5 |
| citation_normalized_percentile.value | 0.87030433 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |