Survey of Distributed Computing Frameworks for Supporting Big Data Analysis Article Swipe
YOU?
·
· 2023
· Open Access
·
· DOI: https://doi.org/10.26599/bdma.2022.9020014
Distributed computing frameworks are the fundamental component of distributed computing systems. They provide an essential way to support the efficient processing of big data on clusters or cloud. The size of big data increases at a pace that is faster than the increase in the big data processing capacity of clusters. Thus, distributed computing frameworks based on the MapReduce computing model are not adequate to support big data analysis tasks which often require running complex analytical algorithms on extremely big data sets in terabytes. In performing such tasks, these frameworks face three challenges: computational inefficiency due to high I/O and communication costs, non-scalability to big data due to memory limit, and limited analytical algorithms because many serial algorithms cannot be implemented in the MapReduce programming model. New distributed computing frameworks need to be developed to conquer these challenges. In this paper, we review MapReduce-type distributed computing frameworks that are currently used in handling big data and discuss their problems when conducting big data analysis. In addition, we present a non-MapReduce distributed computing framework that has the potential to overcome big data analysis challenges.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.26599/bdma.2022.9020014
- https://ieeexplore.ieee.org/ielx7/8254253/10026288/10026506.pdf
- OA Status
- diamond
- Cited By
- 37
- References
- 114
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4320525798
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4320525798Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.26599/bdma.2022.9020014Digital Object Identifier
- Title
-
Survey of Distributed Computing Frameworks for Supporting Big Data AnalysisWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2023Year of publication
- Publication date
-
2023-01-26Full publication date if available
- Authors
-
Xudong Sun, Yulin He, Dingming Wu, Joshua Zhexue HuangList of authors in order
- Landing page
-
https://doi.org/10.26599/bdma.2022.9020014Publisher landing page
- PDF URL
-
https://ieeexplore.ieee.org/ielx7/8254253/10026288/10026506.pdfDirect link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
diamondOpen access status per OpenAlex
- OA URL
-
https://ieeexplore.ieee.org/ielx7/8254253/10026288/10026506.pdfDirect OA link when available
- Concepts
-
Big data, Computer science, Data science, Data miningTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
37Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 19, 2024: 10, 2023: 8Per-year citation counts (last 5 years)
- References (count)
-
114Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4320525798 |
|---|---|
| doi | https://doi.org/10.26599/bdma.2022.9020014 |
| ids.doi | https://doi.org/10.26599/bdma.2022.9020014 |
| ids.openalex | https://openalex.org/W4320525798 |
| fwci | 22.88404219 |
| type | article |
| title | Survey of Distributed Computing Frameworks for Supporting Big Data Analysis |
| awards[0].id | https://openalex.org/G7924544171 |
| awards[0].funder_id | https://openalex.org/F4320321001 |
| awards[0].display_name | |
| awards[0].funder_award_id | 61972261 |
| awards[0].funder_display_name | National Natural Science Foundation of China |
| biblio.issue | 2 |
| biblio.volume | 6 |
| biblio.last_page | 169 |
| biblio.first_page | 154 |
| topics[0].id | https://openalex.org/T10101 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9998000264167786 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1710 |
| topics[0].subfield.display_name | Information Systems |
| topics[0].display_name | Cloud Computing and Resource Management |
| topics[1].id | https://openalex.org/T10715 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9987999796867371 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1705 |
| topics[1].subfield.display_name | Computer Networks and Communications |
| topics[1].display_name | Distributed and Parallel Computing Systems |
| topics[2].id | https://openalex.org/T11181 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9970999956130981 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1705 |
| topics[2].subfield.display_name | Computer Networks and Communications |
| topics[2].display_name | Advanced Data Storage Technologies |
| funders[0].id | https://openalex.org/F4320321001 |
| funders[0].ror | https://ror.org/01h0zpd94 |
| funders[0].display_name | National Natural Science Foundation of China |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C75684735 |
| concepts[0].level | 2 |
| concepts[0].score | 0.6659742593765259 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q858810 |
| concepts[0].display_name | Big data |
| concepts[1].id | https://openalex.org/C41008148 |
| concepts[1].level | 0 |
| concepts[1].score | 0.6481262445449829 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[1].display_name | Computer science |
| concepts[2].id | https://openalex.org/C2522767166 |
| concepts[2].level | 1 |
| concepts[2].score | 0.561282217502594 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q2374463 |
| concepts[2].display_name | Data science |
| concepts[3].id | https://openalex.org/C124101348 |
| concepts[3].level | 1 |
| concepts[3].score | 0.23446312546730042 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q172491 |
| concepts[3].display_name | Data mining |
| keywords[0].id | https://openalex.org/keywords/big-data |
| keywords[0].score | 0.6659742593765259 |
| keywords[0].display_name | Big data |
| keywords[1].id | https://openalex.org/keywords/computer-science |
| keywords[1].score | 0.6481262445449829 |
| keywords[1].display_name | Computer science |
| keywords[2].id | https://openalex.org/keywords/data-science |
| keywords[2].score | 0.561282217502594 |
| keywords[2].display_name | Data science |
| keywords[3].id | https://openalex.org/keywords/data-mining |
| keywords[3].score | 0.23446312546730042 |
| keywords[3].display_name | Data mining |
| language | en |
| locations[0].id | doi:10.26599/bdma.2022.9020014 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4210209060 |
| locations[0].source.issn | 2096-0654 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2096-0654 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | Big Data Mining and Analytics |
| locations[0].source.host_organization | https://openalex.org/P4310311901 |
| locations[0].source.host_organization_name | Tsinghua University Press |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310311901 |
| locations[0].source.host_organization_lineage_names | Tsinghua University Press |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://ieeexplore.ieee.org/ielx7/8254253/10026288/10026506.pdf |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Big Data Mining and Analytics |
| locations[0].landing_page_url | https://doi.org/10.26599/bdma.2022.9020014 |
| locations[1].id | pmh:oai:doaj.org/article:b3eae79348174454895ca39ca9012701 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306401280 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[1].source.host_organization | |
| locations[1].source.host_organization_name | |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | Big Data Mining and Analytics, Vol 6, Iss 2, Pp 154-169 (2023) |
| locations[1].landing_page_url | https://doaj.org/article/b3eae79348174454895ca39ca9012701 |
| indexed_in | crossref, doaj |
| authorships[0].author.id | https://openalex.org/A5038163730 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-5870-6343 |
| authorships[0].author.display_name | Xudong Sun |
| authorships[0].countries | CN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I180726961 |
| authorships[0].affiliations[0].raw_affiliation_string | College of Computer Science and Software Engineering, Shenzhen University,Shenzhen,China,518060 |
| authorships[0].institutions[0].id | https://openalex.org/I180726961 |
| authorships[0].institutions[0].ror | https://ror.org/01vy4gh70 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I180726961 |
| authorships[0].institutions[0].country_code | CN |
| authorships[0].institutions[0].display_name | Shenzhen University |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Xudong Sun |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | College of Computer Science and Software Engineering, Shenzhen University,Shenzhen,China,518060 |
| authorships[1].author.id | https://openalex.org/A5076542236 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-3415-0686 |
| authorships[1].author.display_name | Yulin He |
| authorships[1].countries | CN |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I4210136793 |
| authorships[1].affiliations[0].raw_affiliation_string | Guangdong Laboratory of Artificial Intelligence and Digital Economy (SZ), Shenzhen, China |
| authorships[1].affiliations[1].institution_ids | https://openalex.org/I180726961 |
| authorships[1].affiliations[1].raw_affiliation_string | College of Computer Science and Software Engineering, Shenzhen University,Shenzhen,China,518060 |
| authorships[1].institutions[0].id | https://openalex.org/I4210136793 |
| authorships[1].institutions[0].ror | https://ror.org/03qdqbt06 |
| authorships[1].institutions[0].type | facility |
| authorships[1].institutions[0].lineage | https://openalex.org/I4210136793 |
| authorships[1].institutions[0].country_code | CN |
| authorships[1].institutions[0].display_name | Peng Cheng Laboratory |
| authorships[1].institutions[1].id | https://openalex.org/I180726961 |
| authorships[1].institutions[1].ror | https://ror.org/01vy4gh70 |
| authorships[1].institutions[1].type | education |
| authorships[1].institutions[1].lineage | https://openalex.org/I180726961 |
| authorships[1].institutions[1].country_code | CN |
| authorships[1].institutions[1].display_name | Shenzhen University |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Yulin He |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | College of Computer Science and Software Engineering, Shenzhen University,Shenzhen,China,518060, Guangdong Laboratory of Artificial Intelligence and Digital Economy (SZ), Shenzhen, China |
| authorships[2].author.id | https://openalex.org/A5089698613 |
| authorships[2].author.orcid | https://orcid.org/0000-0001-7566-5793 |
| authorships[2].author.display_name | Dingming Wu |
| authorships[2].countries | CN |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I180726961 |
| authorships[2].affiliations[0].raw_affiliation_string | College of Computer Science and Software Engineering, Shenzhen University,Shenzhen,China,518060 |
| authorships[2].institutions[0].id | https://openalex.org/I180726961 |
| authorships[2].institutions[0].ror | https://ror.org/01vy4gh70 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I180726961 |
| authorships[2].institutions[0].country_code | CN |
| authorships[2].institutions[0].display_name | Shenzhen University |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Dingming Wu |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | College of Computer Science and Software Engineering, Shenzhen University,Shenzhen,China,518060 |
| authorships[3].author.id | https://openalex.org/A5003347359 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-6797-2571 |
| authorships[3].author.display_name | Joshua Zhexue Huang |
| authorships[3].countries | CN |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I4210136793 |
| authorships[3].affiliations[0].raw_affiliation_string | Guangdong Laboratory of Artificial Intelligence and Digital Economy (SZ), Shenzhen, China |
| authorships[3].affiliations[1].institution_ids | https://openalex.org/I180726961 |
| authorships[3].affiliations[1].raw_affiliation_string | College of Computer Science and Software Engineering, Shenzhen University,Shenzhen,China,518060 |
| authorships[3].institutions[0].id | https://openalex.org/I4210136793 |
| authorships[3].institutions[0].ror | https://ror.org/03qdqbt06 |
| authorships[3].institutions[0].type | facility |
| authorships[3].institutions[0].lineage | https://openalex.org/I4210136793 |
| authorships[3].institutions[0].country_code | CN |
| authorships[3].institutions[0].display_name | Peng Cheng Laboratory |
| authorships[3].institutions[1].id | https://openalex.org/I180726961 |
| authorships[3].institutions[1].ror | https://ror.org/01vy4gh70 |
| authorships[3].institutions[1].type | education |
| authorships[3].institutions[1].lineage | https://openalex.org/I180726961 |
| authorships[3].institutions[1].country_code | CN |
| authorships[3].institutions[1].display_name | Shenzhen University |
| authorships[3].author_position | last |
| authorships[3].raw_author_name | Joshua Zhexue Huang |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | College of Computer Science and Software Engineering, Shenzhen University,Shenzhen,China,518060, Guangdong Laboratory of Artificial Intelligence and Digital Economy (SZ), Shenzhen, China |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://ieeexplore.ieee.org/ielx7/8254253/10026288/10026506.pdf |
| open_access.oa_status | diamond |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Survey of Distributed Computing Frameworks for Supporting Big Data Analysis |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10101 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9998000264167786 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1710 |
| primary_topic.subfield.display_name | Information Systems |
| primary_topic.display_name | Cloud Computing and Resource Management |
| related_works | https://openalex.org/W4322629366, https://openalex.org/W2808989540, https://openalex.org/W2397053934, https://openalex.org/W1039292361, https://openalex.org/W2731626691, https://openalex.org/W2551093110, https://openalex.org/W2148016376, https://openalex.org/W4237919137, https://openalex.org/W3184179822, https://openalex.org/W3095362084 |
| cited_by_count | 37 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 19 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 10 |
| counts_by_year[2].year | 2023 |
| counts_by_year[2].cited_by_count | 8 |
| locations_count | 2 |
| best_oa_location.id | doi:10.26599/bdma.2022.9020014 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4210209060 |
| best_oa_location.source.issn | 2096-0654 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2096-0654 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | Big Data Mining and Analytics |
| best_oa_location.source.host_organization | https://openalex.org/P4310311901 |
| best_oa_location.source.host_organization_name | Tsinghua University Press |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310311901 |
| best_oa_location.source.host_organization_lineage_names | Tsinghua University Press |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://ieeexplore.ieee.org/ielx7/8254253/10026288/10026506.pdf |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Big Data Mining and Analytics |
| best_oa_location.landing_page_url | https://doi.org/10.26599/bdma.2022.9020014 |
| primary_location.id | doi:10.26599/bdma.2022.9020014 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4210209060 |
| primary_location.source.issn | 2096-0654 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2096-0654 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | Big Data Mining and Analytics |
| primary_location.source.host_organization | https://openalex.org/P4310311901 |
| primary_location.source.host_organization_name | Tsinghua University Press |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310311901 |
| primary_location.source.host_organization_lineage_names | Tsinghua University Press |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://ieeexplore.ieee.org/ielx7/8254253/10026288/10026506.pdf |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Big Data Mining and Analytics |
| primary_location.landing_page_url | https://doi.org/10.26599/bdma.2022.9020014 |
| publication_date | 2023-01-26 |
| publication_year | 2023 |
| referenced_works | https://openalex.org/W2318396129, https://openalex.org/W2101728887, https://openalex.org/W2114060717, https://openalex.org/W2902227688, https://openalex.org/W2795433008, https://openalex.org/W2159052492, https://openalex.org/W2119565742, https://openalex.org/W4235016097, https://openalex.org/W2151153946, https://openalex.org/W2119738171, https://openalex.org/W2906300927, https://openalex.org/W2756439134, https://openalex.org/W2750150650, https://openalex.org/W3095900626, https://openalex.org/W6682130738, https://openalex.org/W2095930915, https://openalex.org/W4235810972, https://openalex.org/W2002950519, https://openalex.org/W2163173102, https://openalex.org/W2034213689, https://openalex.org/W2108165346, https://openalex.org/W2047189132, https://openalex.org/W2809770026, https://openalex.org/W2130493390, https://openalex.org/W2992159950, https://openalex.org/W2613580061, https://openalex.org/W2937048311, https://openalex.org/W2107550548, https://openalex.org/W4288614325, https://openalex.org/W2137760911, https://openalex.org/W2286596378, https://openalex.org/W1981368351, https://openalex.org/W1965973855, https://openalex.org/W1972058033, https://openalex.org/W2567183129, https://openalex.org/W2111262474, https://openalex.org/W2326565172, https://openalex.org/W2102840489, https://openalex.org/W2142825844, https://openalex.org/W2121243315, https://openalex.org/W2173213060, https://openalex.org/W379212275, https://openalex.org/W2120458882, https://openalex.org/W2317196401, https://openalex.org/W3084128805, https://openalex.org/W6912144523, https://openalex.org/W2953445722, https://openalex.org/W2537791561, https://openalex.org/W156133708, https://openalex.org/W2427751400, https://openalex.org/W2381238867, https://openalex.org/W2738594651, https://openalex.org/W2038412523, https://openalex.org/W3091344841, https://openalex.org/W2437870011, https://openalex.org/W2752238980, https://openalex.org/W6731596640, https://openalex.org/W2476844261, https://openalex.org/W2326236514, https://openalex.org/W2184307269, https://openalex.org/W2110086534, https://openalex.org/W2142031898, https://openalex.org/W1993892970, https://openalex.org/W2098935637, https://openalex.org/W2808622995, https://openalex.org/W2587653735, https://openalex.org/W2534983812, https://openalex.org/W3085924233, https://openalex.org/W6781684284, https://openalex.org/W3007642461, https://openalex.org/W2610722296, https://openalex.org/W6748638692, https://openalex.org/W2105947650, https://openalex.org/W6684084819, https://openalex.org/W4229957470, https://openalex.org/W3195601878, https://openalex.org/W2157355837, https://openalex.org/W2013344760, https://openalex.org/W102909132, https://openalex.org/W2139205321, https://openalex.org/W6703716174, https://openalex.org/W6679815717, https://openalex.org/W6687322159, https://openalex.org/W2773612851, https://openalex.org/W6730369149, https://openalex.org/W3091707190, https://openalex.org/W2808726866, https://openalex.org/W2900113940, https://openalex.org/W3090702692, https://openalex.org/W2084071276, https://openalex.org/W2124701120, https://openalex.org/W2532525999, https://openalex.org/W2800195291, https://openalex.org/W2789758093, https://openalex.org/W3102054936, https://openalex.org/W6607808267, https://openalex.org/W3018761215, https://openalex.org/W2151065878, https://openalex.org/W2022858489, https://openalex.org/W2948194767, https://openalex.org/W3099296482, https://openalex.org/W4297797010, https://openalex.org/W1582448188, https://openalex.org/W3047908100, https://openalex.org/W2149060389, https://openalex.org/W4206840328, https://openalex.org/W194594727, https://openalex.org/W2559572207, https://openalex.org/W2131975293, https://openalex.org/W3122247640, https://openalex.org/W2189465200, https://openalex.org/W2163961697, https://openalex.org/W2538710666, https://openalex.org/W2335914940 |
| referenced_works_count | 114 |
| abstract_inverted_index.a | 35, 168 |
| abstract_inverted_index.In | 84, 138, 164 |
| abstract_inverted_index.an | 13 |
| abstract_inverted_index.at | 34 |
| abstract_inverted_index.be | 119, 132 |
| abstract_inverted_index.in | 43, 82, 121, 151 |
| abstract_inverted_index.is | 38 |
| abstract_inverted_index.of | 7, 21, 30, 49 |
| abstract_inverted_index.on | 24, 56, 77 |
| abstract_inverted_index.or | 26 |
| abstract_inverted_index.to | 16, 64, 96, 103, 107, 131, 134, 177 |
| abstract_inverted_index.we | 141, 166 |
| abstract_inverted_index.I/O | 98 |
| abstract_inverted_index.New | 126 |
| abstract_inverted_index.The | 28 |
| abstract_inverted_index.and | 99, 110, 155 |
| abstract_inverted_index.are | 3, 61, 148 |
| abstract_inverted_index.big | 22, 31, 45, 66, 79, 104, 153, 161, 179 |
| abstract_inverted_index.due | 95, 106 |
| abstract_inverted_index.has | 174 |
| abstract_inverted_index.not | 62 |
| abstract_inverted_index.the | 4, 18, 41, 44, 57, 122, 175 |
| abstract_inverted_index.way | 15 |
| abstract_inverted_index.They | 11 |
| abstract_inverted_index.data | 23, 32, 46, 67, 80, 105, 154, 162, 180 |
| abstract_inverted_index.face | 90 |
| abstract_inverted_index.high | 97 |
| abstract_inverted_index.many | 115 |
| abstract_inverted_index.need | 130 |
| abstract_inverted_index.pace | 36 |
| abstract_inverted_index.sets | 81 |
| abstract_inverted_index.size | 29 |
| abstract_inverted_index.such | 86 |
| abstract_inverted_index.than | 40 |
| abstract_inverted_index.that | 37, 147, 173 |
| abstract_inverted_index.this | 139 |
| abstract_inverted_index.used | 150 |
| abstract_inverted_index.when | 159 |
| abstract_inverted_index.Thus, | 51 |
| abstract_inverted_index.based | 55 |
| abstract_inverted_index.model | 60 |
| abstract_inverted_index.often | 71 |
| abstract_inverted_index.tasks | 69 |
| abstract_inverted_index.their | 157 |
| abstract_inverted_index.these | 88, 136 |
| abstract_inverted_index.three | 91 |
| abstract_inverted_index.which | 70 |
| abstract_inverted_index.cannot | 118 |
| abstract_inverted_index.cloud. | 27 |
| abstract_inverted_index.costs, | 101 |
| abstract_inverted_index.faster | 39 |
| abstract_inverted_index.limit, | 109 |
| abstract_inverted_index.memory | 108 |
| abstract_inverted_index.model. | 125 |
| abstract_inverted_index.paper, | 140 |
| abstract_inverted_index.review | 142 |
| abstract_inverted_index.serial | 116 |
| abstract_inverted_index.tasks, | 87 |
| abstract_inverted_index.because | 114 |
| abstract_inverted_index.complex | 74 |
| abstract_inverted_index.conquer | 135 |
| abstract_inverted_index.discuss | 156 |
| abstract_inverted_index.limited | 111 |
| abstract_inverted_index.present | 167 |
| abstract_inverted_index.provide | 12 |
| abstract_inverted_index.require | 72 |
| abstract_inverted_index.running | 73 |
| abstract_inverted_index.support | 17, 65 |
| abstract_inverted_index.adequate | 63 |
| abstract_inverted_index.analysis | 68, 181 |
| abstract_inverted_index.capacity | 48 |
| abstract_inverted_index.clusters | 25 |
| abstract_inverted_index.handling | 152 |
| abstract_inverted_index.increase | 42 |
| abstract_inverted_index.overcome | 178 |
| abstract_inverted_index.problems | 158 |
| abstract_inverted_index.systems. | 10 |
| abstract_inverted_index.MapReduce | 58, 123 |
| abstract_inverted_index.addition, | 165 |
| abstract_inverted_index.analysis. | 163 |
| abstract_inverted_index.clusters. | 50 |
| abstract_inverted_index.component | 6 |
| abstract_inverted_index.computing | 1, 9, 53, 59, 128, 145, 171 |
| abstract_inverted_index.currently | 149 |
| abstract_inverted_index.developed | 133 |
| abstract_inverted_index.efficient | 19 |
| abstract_inverted_index.essential | 14 |
| abstract_inverted_index.extremely | 78 |
| abstract_inverted_index.framework | 172 |
| abstract_inverted_index.increases | 33 |
| abstract_inverted_index.potential | 176 |
| abstract_inverted_index.algorithms | 76, 113, 117 |
| abstract_inverted_index.analytical | 75, 112 |
| abstract_inverted_index.conducting | 160 |
| abstract_inverted_index.frameworks | 2, 54, 89, 129, 146 |
| abstract_inverted_index.performing | 85 |
| abstract_inverted_index.processing | 20, 47 |
| abstract_inverted_index.terabytes. | 83 |
| abstract_inverted_index.Distributed | 0 |
| abstract_inverted_index.challenges. | 137, 182 |
| abstract_inverted_index.challenges: | 92 |
| abstract_inverted_index.distributed | 8, 52, 127, 144, 170 |
| abstract_inverted_index.fundamental | 5 |
| abstract_inverted_index.implemented | 120 |
| abstract_inverted_index.programming | 124 |
| abstract_inverted_index.inefficiency | 94 |
| abstract_inverted_index.communication | 100 |
| abstract_inverted_index.computational | 93 |
| abstract_inverted_index.non-MapReduce | 169 |
| abstract_inverted_index.MapReduce-type | 143 |
| abstract_inverted_index.non-scalability | 102 |
| cited_by_percentile_year.max | 100 |
| cited_by_percentile_year.min | 99 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 4 |
| citation_normalized_percentile.value | 0.99291962 |
| citation_normalized_percentile.is_in_top_1_percent | True |
| citation_normalized_percentile.is_in_top_10_percent | True |