SurvivalPath:A R package for conducting personalized survival path mapping based on time-series survival data Article Swipe
YOU?
·
· 2023
· Open Access
·
· DOI: https://doi.org/10.1371/journal.pcbi.1010830
Summary The survival path mapping approach has been proposed for dynamic prognostication of cancer patients using time-series survival data. The SurvivalPath R package was developed to facilitate building personalized survival path models. The package contains functions to convert time-series data into time-slices data by fixed interval based on time information of input medical records. After the pre-processing of data, under a user-defined parameters on covariates, significance level, minimum bifurcation sample size and number of time slices for analysis, survival paths can be computed using the main function, which can be visualized as a tree diagram, with important parameters annotated. The package also includes function for analyzing the connections between exposure/treatment and node transitions, and function for screening patient subgroup with specific features, which can be used for further exploration analysis. In this study, we demonstrate the application of this package in a large dataset of patients with hepatocellular carcinoma, which is embedded in the package. The SurvivalPath R package is freely available from CRAN, with source code and documentation hosted at https://github.com/zhangt369/SurvivalPath .
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1371/journal.pcbi.1010830
- OA Status
- gold
- Cited By
- 11
- References
- 10
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4313598915
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4313598915Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1371/journal.pcbi.1010830Digital Object Identifier
- Title
-
SurvivalPath:A R package for conducting personalized survival path mapping based on time-series survival dataWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2023Year of publication
- Publication date
-
2023-01-06Full publication date if available
- Authors
-
Lujun Shen, Jinqing Mo, Changsheng Yang, Yiquan Jiang, Liang‐Ru Ke, Dan Hou, Jingdong Yan, Tao Zhang, Weijun FanList of authors in order
- Landing page
-
https://doi.org/10.1371/journal.pcbi.1010830Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.1371/journal.pcbi.1010830Direct OA link when available
- Concepts
-
Computer science, R package, Series (stratigraphy), Data mining, Function (biology), Tree (set theory), Node (physics), Path (computing), Time series, Machine learning, Mathematics, Computational science, Biology, Engineering, Programming language, Structural engineering, Evolutionary biology, Mathematical analysis, PaleontologyTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
11Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 4, 2024: 7Per-year citation counts (last 5 years)
- References (count)
-
10Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4313598915 |
|---|---|
| doi | https://doi.org/10.1371/journal.pcbi.1010830 |
| ids.doi | https://doi.org/10.1371/journal.pcbi.1010830 |
| ids.pmid | https://pubmed.ncbi.nlm.nih.gov/36608157 |
| ids.openalex | https://openalex.org/W4313598915 |
| fwci | 2.80987176 |
| mesh[0].qualifier_ui | |
| mesh[0].descriptor_ui | D006801 |
| mesh[0].is_major_topic | False |
| mesh[0].qualifier_name | |
| mesh[0].descriptor_name | Humans |
| mesh[1].qualifier_ui | |
| mesh[1].descriptor_ui | D012984 |
| mesh[1].is_major_topic | False |
| mesh[1].qualifier_name | |
| mesh[1].descriptor_name | Software |
| mesh[2].qualifier_ui | |
| mesh[2].descriptor_ui | D013997 |
| mesh[2].is_major_topic | False |
| mesh[2].qualifier_name | |
| mesh[2].descriptor_name | Time Factors |
| mesh[3].qualifier_ui | |
| mesh[3].descriptor_ui | D006528 |
| mesh[3].is_major_topic | True |
| mesh[3].qualifier_name | |
| mesh[3].descriptor_name | Carcinoma, Hepatocellular |
| mesh[4].qualifier_ui | |
| mesh[4].descriptor_ui | D008113 |
| mesh[4].is_major_topic | True |
| mesh[4].qualifier_name | |
| mesh[4].descriptor_name | Liver Neoplasms |
| mesh[5].qualifier_ui | |
| mesh[5].descriptor_ui | D006801 |
| mesh[5].is_major_topic | False |
| mesh[5].qualifier_name | |
| mesh[5].descriptor_name | Humans |
| mesh[6].qualifier_ui | |
| mesh[6].descriptor_ui | D012984 |
| mesh[6].is_major_topic | False |
| mesh[6].qualifier_name | |
| mesh[6].descriptor_name | Software |
| mesh[7].qualifier_ui | |
| mesh[7].descriptor_ui | D013997 |
| mesh[7].is_major_topic | False |
| mesh[7].qualifier_name | |
| mesh[7].descriptor_name | Time Factors |
| mesh[8].qualifier_ui | |
| mesh[8].descriptor_ui | D006528 |
| mesh[8].is_major_topic | True |
| mesh[8].qualifier_name | |
| mesh[8].descriptor_name | Carcinoma, Hepatocellular |
| mesh[9].qualifier_ui | |
| mesh[9].descriptor_ui | D008113 |
| mesh[9].is_major_topic | True |
| mesh[9].qualifier_name | |
| mesh[9].descriptor_name | Liver Neoplasms |
| type | article |
| title | SurvivalPath:A R package for conducting personalized survival path mapping based on time-series survival data |
| biblio.issue | 1 |
| biblio.volume | 19 |
| biblio.last_page | e1010830 |
| biblio.first_page | e1010830 |
| topics[0].id | https://openalex.org/T13702 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9993000030517578 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1702 |
| topics[0].subfield.display_name | Artificial Intelligence |
| topics[0].display_name | Machine Learning in Healthcare |
| topics[1].id | https://openalex.org/T10136 |
| topics[1].field.id | https://openalex.org/fields/26 |
| topics[1].field.display_name | Mathematics |
| topics[1].score | 0.9894000291824341 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2613 |
| topics[1].subfield.display_name | Statistics and Probability |
| topics[1].display_name | Statistical Methods and Inference |
| topics[2].id | https://openalex.org/T12422 |
| topics[2].field.id | https://openalex.org/fields/27 |
| topics[2].field.display_name | Medicine |
| topics[2].score | 0.9883000254631042 |
| topics[2].domain.id | https://openalex.org/domains/4 |
| topics[2].domain.display_name | Health Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2741 |
| topics[2].subfield.display_name | Radiology, Nuclear Medicine and Imaging |
| topics[2].display_name | Radiomics and Machine Learning in Medical Imaging |
| is_xpac | False |
| apc_list.value | 2655 |
| apc_list.currency | USD |
| apc_list.value_usd | 2655 |
| apc_paid.value | 2655 |
| apc_paid.currency | USD |
| apc_paid.value_usd | 2655 |
| concepts[0].id | https://openalex.org/C41008148 |
| concepts[0].level | 0 |
| concepts[0].score | 0.6767738461494446 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[0].display_name | Computer science |
| concepts[1].id | https://openalex.org/C2984074130 |
| concepts[1].level | 2 |
| concepts[1].score | 0.6612502932548523 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q73539779 |
| concepts[1].display_name | R package |
| concepts[2].id | https://openalex.org/C143724316 |
| concepts[2].level | 2 |
| concepts[2].score | 0.5611974000930786 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q312468 |
| concepts[2].display_name | Series (stratigraphy) |
| concepts[3].id | https://openalex.org/C124101348 |
| concepts[3].level | 1 |
| concepts[3].score | 0.5117692947387695 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q172491 |
| concepts[3].display_name | Data mining |
| concepts[4].id | https://openalex.org/C14036430 |
| concepts[4].level | 2 |
| concepts[4].score | 0.49289417266845703 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q3736076 |
| concepts[4].display_name | Function (biology) |
| concepts[5].id | https://openalex.org/C113174947 |
| concepts[5].level | 2 |
| concepts[5].score | 0.48837989568710327 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q2859736 |
| concepts[5].display_name | Tree (set theory) |
| concepts[6].id | https://openalex.org/C62611344 |
| concepts[6].level | 2 |
| concepts[6].score | 0.45848602056503296 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q1062658 |
| concepts[6].display_name | Node (physics) |
| concepts[7].id | https://openalex.org/C2777735758 |
| concepts[7].level | 2 |
| concepts[7].score | 0.44174522161483765 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q817765 |
| concepts[7].display_name | Path (computing) |
| concepts[8].id | https://openalex.org/C151406439 |
| concepts[8].level | 2 |
| concepts[8].score | 0.435351699590683 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q186588 |
| concepts[8].display_name | Time series |
| concepts[9].id | https://openalex.org/C119857082 |
| concepts[9].level | 1 |
| concepts[9].score | 0.13810020685195923 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[9].display_name | Machine learning |
| concepts[10].id | https://openalex.org/C33923547 |
| concepts[10].level | 0 |
| concepts[10].score | 0.13634538650512695 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[10].display_name | Mathematics |
| concepts[11].id | https://openalex.org/C459310 |
| concepts[11].level | 1 |
| concepts[11].score | 0.1258876919746399 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q117801 |
| concepts[11].display_name | Computational science |
| concepts[12].id | https://openalex.org/C86803240 |
| concepts[12].level | 0 |
| concepts[12].score | 0.09738141298294067 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q420 |
| concepts[12].display_name | Biology |
| concepts[13].id | https://openalex.org/C127413603 |
| concepts[13].level | 0 |
| concepts[13].score | 0.0 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q11023 |
| concepts[13].display_name | Engineering |
| concepts[14].id | https://openalex.org/C199360897 |
| concepts[14].level | 1 |
| concepts[14].score | 0.0 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q9143 |
| concepts[14].display_name | Programming language |
| concepts[15].id | https://openalex.org/C66938386 |
| concepts[15].level | 1 |
| concepts[15].score | 0.0 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q633538 |
| concepts[15].display_name | Structural engineering |
| concepts[16].id | https://openalex.org/C78458016 |
| concepts[16].level | 1 |
| concepts[16].score | 0.0 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q840400 |
| concepts[16].display_name | Evolutionary biology |
| concepts[17].id | https://openalex.org/C134306372 |
| concepts[17].level | 1 |
| concepts[17].score | 0.0 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q7754 |
| concepts[17].display_name | Mathematical analysis |
| concepts[18].id | https://openalex.org/C151730666 |
| concepts[18].level | 1 |
| concepts[18].score | 0.0 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q7205 |
| concepts[18].display_name | Paleontology |
| keywords[0].id | https://openalex.org/keywords/computer-science |
| keywords[0].score | 0.6767738461494446 |
| keywords[0].display_name | Computer science |
| keywords[1].id | https://openalex.org/keywords/r-package |
| keywords[1].score | 0.6612502932548523 |
| keywords[1].display_name | R package |
| keywords[2].id | https://openalex.org/keywords/series |
| keywords[2].score | 0.5611974000930786 |
| keywords[2].display_name | Series (stratigraphy) |
| keywords[3].id | https://openalex.org/keywords/data-mining |
| keywords[3].score | 0.5117692947387695 |
| keywords[3].display_name | Data mining |
| keywords[4].id | https://openalex.org/keywords/function |
| keywords[4].score | 0.49289417266845703 |
| keywords[4].display_name | Function (biology) |
| keywords[5].id | https://openalex.org/keywords/tree |
| keywords[5].score | 0.48837989568710327 |
| keywords[5].display_name | Tree (set theory) |
| keywords[6].id | https://openalex.org/keywords/node |
| keywords[6].score | 0.45848602056503296 |
| keywords[6].display_name | Node (physics) |
| keywords[7].id | https://openalex.org/keywords/path |
| keywords[7].score | 0.44174522161483765 |
| keywords[7].display_name | Path (computing) |
| keywords[8].id | https://openalex.org/keywords/time-series |
| keywords[8].score | 0.435351699590683 |
| keywords[8].display_name | Time series |
| keywords[9].id | https://openalex.org/keywords/machine-learning |
| keywords[9].score | 0.13810020685195923 |
| keywords[9].display_name | Machine learning |
| keywords[10].id | https://openalex.org/keywords/mathematics |
| keywords[10].score | 0.13634538650512695 |
| keywords[10].display_name | Mathematics |
| keywords[11].id | https://openalex.org/keywords/computational-science |
| keywords[11].score | 0.1258876919746399 |
| keywords[11].display_name | Computational science |
| keywords[12].id | https://openalex.org/keywords/biology |
| keywords[12].score | 0.09738141298294067 |
| keywords[12].display_name | Biology |
| language | en |
| locations[0].id | doi:10.1371/journal.pcbi.1010830 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S86033158 |
| locations[0].source.issn | 1553-734X, 1553-7358 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 1553-734X |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | PLoS Computational Biology |
| locations[0].source.host_organization | https://openalex.org/P4310315706 |
| locations[0].source.host_organization_name | Public Library of Science |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310315706 |
| locations[0].license | cc-by |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | PLOS Computational Biology |
| locations[0].landing_page_url | https://doi.org/10.1371/journal.pcbi.1010830 |
| locations[1].id | pmid:36608157 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306525036 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | PubMed |
| locations[1].source.host_organization | https://openalex.org/I1299303238 |
| locations[1].source.host_organization_name | National Institutes of Health |
| locations[1].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | publishedVersion |
| locations[1].raw_type | |
| locations[1].license_id | |
| locations[1].is_accepted | True |
| locations[1].is_published | True |
| locations[1].raw_source_name | PLoS computational biology |
| locations[1].landing_page_url | https://pubmed.ncbi.nlm.nih.gov/36608157 |
| locations[2].id | pmh:oai:doaj.org/article:95d9e7d9e5d3492ebb27a10824cdc6cf |
| locations[2].is_oa | False |
| locations[2].source.id | https://openalex.org/S4306401280 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | False |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[2].source.host_organization | |
| locations[2].source.host_organization_name | |
| locations[2].source.host_organization_lineage | |
| locations[2].license | |
| locations[2].pdf_url | |
| locations[2].version | submittedVersion |
| locations[2].raw_type | article |
| locations[2].license_id | |
| locations[2].is_accepted | False |
| locations[2].is_published | False |
| locations[2].raw_source_name | PLoS Computational Biology, Vol 19, Iss 1, p e1010830 (2023) |
| locations[2].landing_page_url | https://doaj.org/article/95d9e7d9e5d3492ebb27a10824cdc6cf |
| locations[3].id | pmh:oai:pubmedcentral.nih.gov:9851545 |
| locations[3].is_oa | True |
| locations[3].source.id | https://openalex.org/S2764455111 |
| locations[3].source.issn | |
| locations[3].source.type | repository |
| locations[3].source.is_oa | False |
| locations[3].source.issn_l | |
| locations[3].source.is_core | False |
| locations[3].source.is_in_doaj | False |
| locations[3].source.display_name | PubMed Central |
| locations[3].source.host_organization | https://openalex.org/I1299303238 |
| locations[3].source.host_organization_name | National Institutes of Health |
| locations[3].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[3].license | other-oa |
| locations[3].pdf_url | |
| locations[3].version | submittedVersion |
| locations[3].raw_type | Text |
| locations[3].license_id | https://openalex.org/licenses/other-oa |
| locations[3].is_accepted | False |
| locations[3].is_published | False |
| locations[3].raw_source_name | PLoS Comput Biol |
| locations[3].landing_page_url | https://www.ncbi.nlm.nih.gov/pmc/articles/9851545 |
| indexed_in | crossref, doaj, pubmed |
| authorships[0].author.id | https://openalex.org/A5008020180 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-7936-0206 |
| authorships[0].author.display_name | Lujun Shen |
| authorships[0].countries | CN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I157773358, https://openalex.org/I4210146711 |
| authorships[0].affiliations[0].raw_affiliation_string | State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Sun Yat-sen University, Guangzhou, People’s Republic of China |
| authorships[0].affiliations[1].institution_ids | https://openalex.org/I157773358, https://openalex.org/I4210146711 |
| authorships[0].affiliations[1].raw_affiliation_string | Department of Minimally Invasive Interventional Therapy, Sun Yat-sen University Cancer Center, Guangzhou, People’s Republic of China |
| authorships[0].institutions[0].id | https://openalex.org/I157773358 |
| authorships[0].institutions[0].ror | https://ror.org/0064kty71 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I157773358 |
| authorships[0].institutions[0].country_code | CN |
| authorships[0].institutions[0].display_name | Sun Yat-sen University |
| authorships[0].institutions[1].id | https://openalex.org/I4210146711 |
| authorships[0].institutions[1].ror | https://ror.org/0400g8r85 |
| authorships[0].institutions[1].type | healthcare |
| authorships[0].institutions[1].lineage | https://openalex.org/I4210146711 |
| authorships[0].institutions[1].country_code | CN |
| authorships[0].institutions[1].display_name | Sun Yat-sen University Cancer Center |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Lujun Shen |
| authorships[0].is_corresponding | True |
| authorships[0].raw_affiliation_strings | Department of Minimally Invasive Interventional Therapy, Sun Yat-sen University Cancer Center, Guangzhou, People’s Republic of China, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Sun Yat-sen University, Guangzhou, People’s Republic of China |
| authorships[1].author.id | https://openalex.org/A5011909410 |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | Jinqing Mo |
| authorships[1].countries | CN |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I157773358, https://openalex.org/I4210146711 |
| authorships[1].affiliations[0].raw_affiliation_string | Zhongshan School of Medicine, Sun Yat-sen University Cancer Center, Guangzhou, People’s Republic of China |
| authorships[1].institutions[0].id | https://openalex.org/I157773358 |
| authorships[1].institutions[0].ror | https://ror.org/0064kty71 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I157773358 |
| authorships[1].institutions[0].country_code | CN |
| authorships[1].institutions[0].display_name | Sun Yat-sen University |
| authorships[1].institutions[1].id | https://openalex.org/I4210146711 |
| authorships[1].institutions[1].ror | https://ror.org/0400g8r85 |
| authorships[1].institutions[1].type | healthcare |
| authorships[1].institutions[1].lineage | https://openalex.org/I4210146711 |
| authorships[1].institutions[1].country_code | CN |
| authorships[1].institutions[1].display_name | Sun Yat-sen University Cancer Center |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Jinqing Mo |
| authorships[1].is_corresponding | True |
| authorships[1].raw_affiliation_strings | Zhongshan School of Medicine, Sun Yat-sen University Cancer Center, Guangzhou, People’s Republic of China |
| authorships[2].author.id | https://openalex.org/A5021997436 |
| authorships[2].author.orcid | https://orcid.org/0000-0003-3824-1128 |
| authorships[2].author.display_name | Changsheng Yang |
| authorships[2].countries | CN |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I4210088873 |
| authorships[2].affiliations[0].raw_affiliation_string | Department of Spine Surgery, Third Affiliated Hospital of Southern Medical University, Guangzhou, People’s Republic of China |
| authorships[2].institutions[0].id | https://openalex.org/I4210088873 |
| authorships[2].institutions[0].ror | https://ror.org/0050r1b65 |
| authorships[2].institutions[0].type | healthcare |
| authorships[2].institutions[0].lineage | https://openalex.org/I4210088873 |
| authorships[2].institutions[0].country_code | CN |
| authorships[2].institutions[0].display_name | Third Affiliated Hospital of Southern Medical University |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Changsheng Yang |
| authorships[2].is_corresponding | True |
| authorships[2].raw_affiliation_strings | Department of Spine Surgery, Third Affiliated Hospital of Southern Medical University, Guangzhou, People’s Republic of China |
| authorships[3].author.id | https://openalex.org/A5101528371 |
| authorships[3].author.orcid | |
| authorships[3].author.display_name | Yiquan Jiang |
| authorships[3].countries | CN |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I157773358, https://openalex.org/I4210146711 |
| authorships[3].affiliations[0].raw_affiliation_string | State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Sun Yat-sen University, Guangzhou, People’s Republic of China |
| authorships[3].affiliations[1].institution_ids | https://openalex.org/I157773358, https://openalex.org/I4210146711 |
| authorships[3].affiliations[1].raw_affiliation_string | Department of Minimally Invasive Interventional Therapy, Sun Yat-sen University Cancer Center, Guangzhou, People’s Republic of China |
| authorships[3].institutions[0].id | https://openalex.org/I157773358 |
| authorships[3].institutions[0].ror | https://ror.org/0064kty71 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I157773358 |
| authorships[3].institutions[0].country_code | CN |
| authorships[3].institutions[0].display_name | Sun Yat-sen University |
| authorships[3].institutions[1].id | https://openalex.org/I4210146711 |
| authorships[3].institutions[1].ror | https://ror.org/0400g8r85 |
| authorships[3].institutions[1].type | healthcare |
| authorships[3].institutions[1].lineage | https://openalex.org/I4210146711 |
| authorships[3].institutions[1].country_code | CN |
| authorships[3].institutions[1].display_name | Sun Yat-sen University Cancer Center |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Yiquan Jiang |
| authorships[3].is_corresponding | True |
| authorships[3].raw_affiliation_strings | Department of Minimally Invasive Interventional Therapy, Sun Yat-sen University Cancer Center, Guangzhou, People’s Republic of China, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Sun Yat-sen University, Guangzhou, People’s Republic of China |
| authorships[4].author.id | https://openalex.org/A5109498486 |
| authorships[4].author.orcid | |
| authorships[4].author.display_name | Liang‐Ru Ke |
| authorships[4].countries | CN |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I157773358, https://openalex.org/I4210146711 |
| authorships[4].affiliations[0].raw_affiliation_string | Department of Radiology, Sun Yat-sen University Cancer Center, Guangzhou, People’s Republic of China |
| authorships[4].affiliations[1].institution_ids | https://openalex.org/I157773358, https://openalex.org/I4210146711 |
| authorships[4].affiliations[1].raw_affiliation_string | State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Sun Yat-sen University, Guangzhou, People’s Republic of China |
| authorships[4].institutions[0].id | https://openalex.org/I157773358 |
| authorships[4].institutions[0].ror | https://ror.org/0064kty71 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I157773358 |
| authorships[4].institutions[0].country_code | CN |
| authorships[4].institutions[0].display_name | Sun Yat-sen University |
| authorships[4].institutions[1].id | https://openalex.org/I4210146711 |
| authorships[4].institutions[1].ror | https://ror.org/0400g8r85 |
| authorships[4].institutions[1].type | healthcare |
| authorships[4].institutions[1].lineage | https://openalex.org/I4210146711 |
| authorships[4].institutions[1].country_code | CN |
| authorships[4].institutions[1].display_name | Sun Yat-sen University Cancer Center |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Liangru Ke |
| authorships[4].is_corresponding | True |
| authorships[4].raw_affiliation_strings | Department of Radiology, Sun Yat-sen University Cancer Center, Guangzhou, People’s Republic of China, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Sun Yat-sen University, Guangzhou, People’s Republic of China |
| authorships[5].author.id | https://openalex.org/A5101538826 |
| authorships[5].author.orcid | https://orcid.org/0000-0001-9824-7500 |
| authorships[5].author.display_name | Dan Hou |
| authorships[5].affiliations[0].raw_affiliation_string | Deepaint Intelligence Technology Co., Ltd., Guangzhou, People’s Republic of China |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Dan Hou |
| authorships[5].is_corresponding | True |
| authorships[5].raw_affiliation_strings | Deepaint Intelligence Technology Co., Ltd., Guangzhou, People’s Republic of China |
| authorships[6].author.id | https://openalex.org/A5100778536 |
| authorships[6].author.orcid | |
| authorships[6].author.display_name | Jingdong Yan |
| authorships[6].countries | CN |
| authorships[6].affiliations[0].institution_ids | https://openalex.org/I4210103346, https://openalex.org/I58200834 |
| authorships[6].affiliations[0].raw_affiliation_string | Department of Information, Nanfang Hospital, Southern Medical University, Guangzhou, People’s Republic of China |
| authorships[6].institutions[0].id | https://openalex.org/I4210103346 |
| authorships[6].institutions[0].ror | https://ror.org/01eq10738 |
| authorships[6].institutions[0].type | healthcare |
| authorships[6].institutions[0].lineage | https://openalex.org/I4210103346 |
| authorships[6].institutions[0].country_code | CN |
| authorships[6].institutions[0].display_name | Nanfang Hospital |
| authorships[6].institutions[1].id | https://openalex.org/I58200834 |
| authorships[6].institutions[1].ror | https://ror.org/01vjw4z39 |
| authorships[6].institutions[1].type | education |
| authorships[6].institutions[1].lineage | https://openalex.org/I58200834 |
| authorships[6].institutions[1].country_code | CN |
| authorships[6].institutions[1].display_name | Southern Medical University |
| authorships[6].author_position | middle |
| authorships[6].raw_author_name | Jingdong Yan |
| authorships[6].is_corresponding | True |
| authorships[6].raw_affiliation_strings | Department of Information, Nanfang Hospital, Southern Medical University, Guangzhou, People’s Republic of China |
| authorships[7].author.id | https://openalex.org/A5100375867 |
| authorships[7].author.orcid | https://orcid.org/0000-0002-9870-9178 |
| authorships[7].author.display_name | Tao Zhang |
| authorships[7].countries | CN |
| authorships[7].affiliations[0].institution_ids | https://openalex.org/I4210103346, https://openalex.org/I58200834 |
| authorships[7].affiliations[0].raw_affiliation_string | Department of Information, Nanfang Hospital, Southern Medical University, Guangzhou, People’s Republic of China |
| authorships[7].institutions[0].id | https://openalex.org/I4210103346 |
| authorships[7].institutions[0].ror | https://ror.org/01eq10738 |
| authorships[7].institutions[0].type | healthcare |
| authorships[7].institutions[0].lineage | https://openalex.org/I4210103346 |
| authorships[7].institutions[0].country_code | CN |
| authorships[7].institutions[0].display_name | Nanfang Hospital |
| authorships[7].institutions[1].id | https://openalex.org/I58200834 |
| authorships[7].institutions[1].ror | https://ror.org/01vjw4z39 |
| authorships[7].institutions[1].type | education |
| authorships[7].institutions[1].lineage | https://openalex.org/I58200834 |
| authorships[7].institutions[1].country_code | CN |
| authorships[7].institutions[1].display_name | Southern Medical University |
| authorships[7].author_position | middle |
| authorships[7].raw_author_name | Tao Zhang |
| authorships[7].is_corresponding | True |
| authorships[7].raw_affiliation_strings | Department of Information, Nanfang Hospital, Southern Medical University, Guangzhou, People’s Republic of China |
| authorships[8].author.id | https://openalex.org/A5072479355 |
| authorships[8].author.orcid | https://orcid.org/0000-0002-8757-647X |
| authorships[8].author.display_name | Weijun Fan |
| authorships[8].countries | CN |
| authorships[8].affiliations[0].institution_ids | https://openalex.org/I157773358, https://openalex.org/I4210146711 |
| authorships[8].affiliations[0].raw_affiliation_string | State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Sun Yat-sen University, Guangzhou, People’s Republic of China |
| authorships[8].affiliations[1].institution_ids | https://openalex.org/I157773358, https://openalex.org/I4210146711 |
| authorships[8].affiliations[1].raw_affiliation_string | Department of Minimally Invasive Interventional Therapy, Sun Yat-sen University Cancer Center, Guangzhou, People’s Republic of China |
| authorships[8].institutions[0].id | https://openalex.org/I157773358 |
| authorships[8].institutions[0].ror | https://ror.org/0064kty71 |
| authorships[8].institutions[0].type | education |
| authorships[8].institutions[0].lineage | https://openalex.org/I157773358 |
| authorships[8].institutions[0].country_code | CN |
| authorships[8].institutions[0].display_name | Sun Yat-sen University |
| authorships[8].institutions[1].id | https://openalex.org/I4210146711 |
| authorships[8].institutions[1].ror | https://ror.org/0400g8r85 |
| authorships[8].institutions[1].type | healthcare |
| authorships[8].institutions[1].lineage | https://openalex.org/I4210146711 |
| authorships[8].institutions[1].country_code | CN |
| authorships[8].institutions[1].display_name | Sun Yat-sen University Cancer Center |
| authorships[8].author_position | last |
| authorships[8].raw_author_name | Weijun Fan |
| authorships[8].is_corresponding | True |
| authorships[8].raw_affiliation_strings | Department of Minimally Invasive Interventional Therapy, Sun Yat-sen University Cancer Center, Guangzhou, People’s Republic of China, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Sun Yat-sen University, Guangzhou, People’s Republic of China |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.1371/journal.pcbi.1010830 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | SurvivalPath:A R package for conducting personalized survival path mapping based on time-series survival data |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T13702 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9993000030517578 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1702 |
| primary_topic.subfield.display_name | Artificial Intelligence |
| primary_topic.display_name | Machine Learning in Healthcare |
| related_works | https://openalex.org/W2754214645, https://openalex.org/W4389426664, https://openalex.org/W4225126530, https://openalex.org/W4362511788, https://openalex.org/W4214589041, https://openalex.org/W2791348740, https://openalex.org/W1741429903, https://openalex.org/W4316464002, https://openalex.org/W2997146908, https://openalex.org/W1985727224 |
| cited_by_count | 11 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 4 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 7 |
| locations_count | 4 |
| best_oa_location.id | doi:10.1371/journal.pcbi.1010830 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S86033158 |
| best_oa_location.source.issn | 1553-734X, 1553-7358 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 1553-734X |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | PLoS Computational Biology |
| best_oa_location.source.host_organization | https://openalex.org/P4310315706 |
| best_oa_location.source.host_organization_name | Public Library of Science |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310315706 |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | PLOS Computational Biology |
| best_oa_location.landing_page_url | https://doi.org/10.1371/journal.pcbi.1010830 |
| primary_location.id | doi:10.1371/journal.pcbi.1010830 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S86033158 |
| primary_location.source.issn | 1553-734X, 1553-7358 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 1553-734X |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | PLoS Computational Biology |
| primary_location.source.host_organization | https://openalex.org/P4310315706 |
| primary_location.source.host_organization_name | Public Library of Science |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310315706 |
| primary_location.license | cc-by |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | PLOS Computational Biology |
| primary_location.landing_page_url | https://doi.org/10.1371/journal.pcbi.1010830 |
| publication_date | 2023-01-06 |
| publication_year | 2023 |
| referenced_works | https://openalex.org/W2806442883, https://openalex.org/W3082078093, https://openalex.org/W2607113351, https://openalex.org/W2805089815, https://openalex.org/W2956087440, https://openalex.org/W2050418356, https://openalex.org/W2952098834, https://openalex.org/W2109242212, https://openalex.org/W4242769447, https://openalex.org/W2141444851 |
| referenced_works_count | 10 |
| abstract_inverted_index.. | 172 |
| abstract_inverted_index.R | 21, 157 |
| abstract_inverted_index.a | 60, 92, 141 |
| abstract_inverted_index.In | 130 |
| abstract_inverted_index.as | 91 |
| abstract_inverted_index.at | 170 |
| abstract_inverted_index.be | 81, 89, 124 |
| abstract_inverted_index.by | 43 |
| abstract_inverted_index.in | 140, 152 |
| abstract_inverted_index.is | 150, 159 |
| abstract_inverted_index.of | 12, 50, 57, 73, 137, 144 |
| abstract_inverted_index.on | 47, 63 |
| abstract_inverted_index.to | 25, 36 |
| abstract_inverted_index.we | 133 |
| abstract_inverted_index.The | 1, 19, 32, 99, 155 |
| abstract_inverted_index.and | 71, 110, 113, 167 |
| abstract_inverted_index.can | 80, 88, 123 |
| abstract_inverted_index.for | 9, 76, 104, 115, 126 |
| abstract_inverted_index.has | 6 |
| abstract_inverted_index.the | 55, 84, 106, 135, 153 |
| abstract_inverted_index.was | 23 |
| abstract_inverted_index.also | 101 |
| abstract_inverted_index.been | 7 |
| abstract_inverted_index.code | 166 |
| abstract_inverted_index.data | 39, 42 |
| abstract_inverted_index.from | 162 |
| abstract_inverted_index.into | 40 |
| abstract_inverted_index.main | 85 |
| abstract_inverted_index.node | 111 |
| abstract_inverted_index.path | 3, 30 |
| abstract_inverted_index.size | 70 |
| abstract_inverted_index.this | 131, 138 |
| abstract_inverted_index.time | 48, 74 |
| abstract_inverted_index.tree | 93 |
| abstract_inverted_index.used | 125 |
| abstract_inverted_index.with | 95, 119, 146, 164 |
| abstract_inverted_index.After | 54 |
| abstract_inverted_index.CRAN, | 163 |
| abstract_inverted_index.based | 46 |
| abstract_inverted_index.data, | 58 |
| abstract_inverted_index.data. | 18 |
| abstract_inverted_index.fixed | 44 |
| abstract_inverted_index.input | 51 |
| abstract_inverted_index.large | 142 |
| abstract_inverted_index.paths | 79 |
| abstract_inverted_index.under | 59 |
| abstract_inverted_index.using | 15, 83 |
| abstract_inverted_index.which | 87, 122, 149 |
| abstract_inverted_index.cancer | 13 |
| abstract_inverted_index.freely | 160 |
| abstract_inverted_index.hosted | 169 |
| abstract_inverted_index.level, | 66 |
| abstract_inverted_index.number | 72 |
| abstract_inverted_index.sample | 69 |
| abstract_inverted_index.slices | 75 |
| abstract_inverted_index.source | 165 |
| abstract_inverted_index.study, | 132 |
| abstract_inverted_index.Summary | 0 |
| abstract_inverted_index.between | 108 |
| abstract_inverted_index.convert | 37 |
| abstract_inverted_index.dataset | 143 |
| abstract_inverted_index.dynamic | 10 |
| abstract_inverted_index.further | 127 |
| abstract_inverted_index.mapping | 4 |
| abstract_inverted_index.medical | 52 |
| abstract_inverted_index.minimum | 67 |
| abstract_inverted_index.models. | 31 |
| abstract_inverted_index.package | 22, 33, 100, 139, 158 |
| abstract_inverted_index.patient | 117 |
| abstract_inverted_index.approach | 5 |
| abstract_inverted_index.building | 27 |
| abstract_inverted_index.computed | 82 |
| abstract_inverted_index.contains | 34 |
| abstract_inverted_index.diagram, | 94 |
| abstract_inverted_index.embedded | 151 |
| abstract_inverted_index.function | 103, 114 |
| abstract_inverted_index.includes | 102 |
| abstract_inverted_index.interval | 45 |
| abstract_inverted_index.package. | 154 |
| abstract_inverted_index.patients | 14, 145 |
| abstract_inverted_index.proposed | 8 |
| abstract_inverted_index.records. | 53 |
| abstract_inverted_index.specific | 120 |
| abstract_inverted_index.subgroup | 118 |
| abstract_inverted_index.survival | 2, 17, 29, 78 |
| abstract_inverted_index.analysis, | 77 |
| abstract_inverted_index.analysis. | 129 |
| abstract_inverted_index.analyzing | 105 |
| abstract_inverted_index.available | 161 |
| abstract_inverted_index.developed | 24 |
| abstract_inverted_index.features, | 121 |
| abstract_inverted_index.function, | 86 |
| abstract_inverted_index.functions | 35 |
| abstract_inverted_index.important | 96 |
| abstract_inverted_index.screening | 116 |
| abstract_inverted_index.annotated. | 98 |
| abstract_inverted_index.carcinoma, | 148 |
| abstract_inverted_index.facilitate | 26 |
| abstract_inverted_index.parameters | 62, 97 |
| abstract_inverted_index.visualized | 90 |
| abstract_inverted_index.application | 136 |
| abstract_inverted_index.bifurcation | 68 |
| abstract_inverted_index.connections | 107 |
| abstract_inverted_index.covariates, | 64 |
| abstract_inverted_index.demonstrate | 134 |
| abstract_inverted_index.exploration | 128 |
| abstract_inverted_index.information | 49 |
| abstract_inverted_index.time-series | 16, 38 |
| abstract_inverted_index.time-slices | 41 |
| abstract_inverted_index.SurvivalPath | 20, 156 |
| abstract_inverted_index.personalized | 28 |
| abstract_inverted_index.significance | 65 |
| abstract_inverted_index.transitions, | 112 |
| abstract_inverted_index.user-defined | 61 |
| abstract_inverted_index.documentation | 168 |
| abstract_inverted_index.hepatocellular | 147 |
| abstract_inverted_index.pre-processing | 56 |
| abstract_inverted_index.prognostication | 11 |
| abstract_inverted_index.exposure/treatment | 109 |
| abstract_inverted_index.https://github.com/zhangt369/SurvivalPath | 171 |
| cited_by_percentile_year.max | 99 |
| cited_by_percentile_year.min | 98 |
| corresponding_author_ids | https://openalex.org/A5008020180, https://openalex.org/A5101528371, https://openalex.org/A5021997436, https://openalex.org/A5109498486, https://openalex.org/A5100778536, https://openalex.org/A5011909410, https://openalex.org/A5101538826, https://openalex.org/A5072479355, https://openalex.org/A5100375867 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 9 |
| corresponding_institution_ids | https://openalex.org/I157773358, https://openalex.org/I4210088873, https://openalex.org/I4210103346, https://openalex.org/I4210146711, https://openalex.org/I58200834 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/3 |
| sustainable_development_goals[0].score | 0.5199999809265137 |
| sustainable_development_goals[0].display_name | Good health and well-being |
| citation_normalized_percentile.value | 0.90003069 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |