SVTR: Scene Text Recognition with a Single Visual Model Article Swipe
YOU?
·
· 2022
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2205.00159
Dominant scene text recognition models commonly contain two building blocks, a visual model for feature extraction and a sequence model for text transcription. This hybrid architecture, although accurate, is complex and less efficient. In this study, we propose a Single Visual model for Scene Text recognition within the patch-wise image tokenization framework, which dispenses with the sequential modeling entirely. The method, termed SVTR, firstly decomposes an image text into small patches named character components. Afterward, hierarchical stages are recurrently carried out by component-level mixing, merging and/or combining. Global and local mixing blocks are devised to perceive the inter-character and intra-character patterns, leading to a multi-grained character component perception. Thus, characters are recognized by a simple linear prediction. Experimental results on both English and Chinese scene text recognition tasks demonstrate the effectiveness of SVTR. SVTR-L (Large) achieves highly competitive accuracy in English and outperforms existing methods by a large margin in Chinese, while running faster. In addition, SVTR-T (Tiny) is an effective and much smaller model, which shows appealing speed at inference. The code is publicly available at https://github.com/PaddlePaddle/PaddleOCR.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2205.00159
- https://arxiv.org/pdf/2205.00159
- OA Status
- green
- Cited By
- 25
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4308291331
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4308291331Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2205.00159Digital Object Identifier
- Title
-
SVTR: Scene Text Recognition with a Single Visual ModelWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2022Year of publication
- Publication date
-
2022-04-30Full publication date if available
- Authors
-
Yongkun Du, Zhineng Chen, Caiyan Jia, Xiaoting Yin, Tianlun Zheng, Chenxia Li, Yuning Du, Yu–Gang JiangList of authors in order
- Landing page
-
https://arxiv.org/abs/2205.00159Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2205.00159Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2205.00159Direct OA link when available
- Concepts
-
Computer science, Artificial intelligence, Character (mathematics), Inference, Pattern recognition (psychology), Component (thermodynamics), Feature (linguistics), Code (set theory), Margin (machine learning), Perception, Natural language processing, Speech recognition, Machine learning, Set (abstract data type), Mathematics, Thermodynamics, Biology, Neuroscience, Programming language, Philosophy, Linguistics, Physics, GeometryTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
25Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 4, 2024: 12, 2023: 9Per-year citation counts (last 5 years)
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4308291331 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2205.00159 |
| ids.doi | https://doi.org/10.48550/arxiv.2205.00159 |
| ids.openalex | https://openalex.org/W4308291331 |
| fwci | |
| type | preprint |
| title | SVTR: Scene Text Recognition with a Single Visual Model |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10601 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9995999932289124 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1707 |
| topics[0].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[0].display_name | Handwritten Text Recognition Techniques |
| topics[1].id | https://openalex.org/T10824 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.991599977016449 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1707 |
| topics[1].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[1].display_name | Image Retrieval and Classification Techniques |
| topics[2].id | https://openalex.org/T11550 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.955299973487854 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1702 |
| topics[2].subfield.display_name | Artificial Intelligence |
| topics[2].display_name | Text and Document Classification Technologies |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C41008148 |
| concepts[0].level | 0 |
| concepts[0].score | 0.8300396203994751 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[0].display_name | Computer science |
| concepts[1].id | https://openalex.org/C154945302 |
| concepts[1].level | 1 |
| concepts[1].score | 0.6297414302825928 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[1].display_name | Artificial intelligence |
| concepts[2].id | https://openalex.org/C2780861071 |
| concepts[2].level | 2 |
| concepts[2].score | 0.5911625623703003 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q1062934 |
| concepts[2].display_name | Character (mathematics) |
| concepts[3].id | https://openalex.org/C2776214188 |
| concepts[3].level | 2 |
| concepts[3].score | 0.5876477956771851 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q408386 |
| concepts[3].display_name | Inference |
| concepts[4].id | https://openalex.org/C153180895 |
| concepts[4].level | 2 |
| concepts[4].score | 0.4958849847316742 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[4].display_name | Pattern recognition (psychology) |
| concepts[5].id | https://openalex.org/C168167062 |
| concepts[5].level | 2 |
| concepts[5].score | 0.4934898614883423 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q1117970 |
| concepts[5].display_name | Component (thermodynamics) |
| concepts[6].id | https://openalex.org/C2776401178 |
| concepts[6].level | 2 |
| concepts[6].score | 0.4599745273590088 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q12050496 |
| concepts[6].display_name | Feature (linguistics) |
| concepts[7].id | https://openalex.org/C2776760102 |
| concepts[7].level | 3 |
| concepts[7].score | 0.45932647585868835 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q5139990 |
| concepts[7].display_name | Code (set theory) |
| concepts[8].id | https://openalex.org/C774472 |
| concepts[8].level | 2 |
| concepts[8].score | 0.451331228017807 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q6760393 |
| concepts[8].display_name | Margin (machine learning) |
| concepts[9].id | https://openalex.org/C26760741 |
| concepts[9].level | 2 |
| concepts[9].score | 0.4244038462638855 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q160402 |
| concepts[9].display_name | Perception |
| concepts[10].id | https://openalex.org/C204321447 |
| concepts[10].level | 1 |
| concepts[10].score | 0.3918342590332031 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q30642 |
| concepts[10].display_name | Natural language processing |
| concepts[11].id | https://openalex.org/C28490314 |
| concepts[11].level | 1 |
| concepts[11].score | 0.3410831689834595 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q189436 |
| concepts[11].display_name | Speech recognition |
| concepts[12].id | https://openalex.org/C119857082 |
| concepts[12].level | 1 |
| concepts[12].score | 0.2369108498096466 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[12].display_name | Machine learning |
| concepts[13].id | https://openalex.org/C177264268 |
| concepts[13].level | 2 |
| concepts[13].score | 0.0 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q1514741 |
| concepts[13].display_name | Set (abstract data type) |
| concepts[14].id | https://openalex.org/C33923547 |
| concepts[14].level | 0 |
| concepts[14].score | 0.0 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[14].display_name | Mathematics |
| concepts[15].id | https://openalex.org/C97355855 |
| concepts[15].level | 1 |
| concepts[15].score | 0.0 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q11473 |
| concepts[15].display_name | Thermodynamics |
| concepts[16].id | https://openalex.org/C86803240 |
| concepts[16].level | 0 |
| concepts[16].score | 0.0 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q420 |
| concepts[16].display_name | Biology |
| concepts[17].id | https://openalex.org/C169760540 |
| concepts[17].level | 1 |
| concepts[17].score | 0.0 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q207011 |
| concepts[17].display_name | Neuroscience |
| concepts[18].id | https://openalex.org/C199360897 |
| concepts[18].level | 1 |
| concepts[18].score | 0.0 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q9143 |
| concepts[18].display_name | Programming language |
| concepts[19].id | https://openalex.org/C138885662 |
| concepts[19].level | 0 |
| concepts[19].score | 0.0 |
| concepts[19].wikidata | https://www.wikidata.org/wiki/Q5891 |
| concepts[19].display_name | Philosophy |
| concepts[20].id | https://openalex.org/C41895202 |
| concepts[20].level | 1 |
| concepts[20].score | 0.0 |
| concepts[20].wikidata | https://www.wikidata.org/wiki/Q8162 |
| concepts[20].display_name | Linguistics |
| concepts[21].id | https://openalex.org/C121332964 |
| concepts[21].level | 0 |
| concepts[21].score | 0.0 |
| concepts[21].wikidata | https://www.wikidata.org/wiki/Q413 |
| concepts[21].display_name | Physics |
| concepts[22].id | https://openalex.org/C2524010 |
| concepts[22].level | 1 |
| concepts[22].score | 0.0 |
| concepts[22].wikidata | https://www.wikidata.org/wiki/Q8087 |
| concepts[22].display_name | Geometry |
| keywords[0].id | https://openalex.org/keywords/computer-science |
| keywords[0].score | 0.8300396203994751 |
| keywords[0].display_name | Computer science |
| keywords[1].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[1].score | 0.6297414302825928 |
| keywords[1].display_name | Artificial intelligence |
| keywords[2].id | https://openalex.org/keywords/character |
| keywords[2].score | 0.5911625623703003 |
| keywords[2].display_name | Character (mathematics) |
| keywords[3].id | https://openalex.org/keywords/inference |
| keywords[3].score | 0.5876477956771851 |
| keywords[3].display_name | Inference |
| keywords[4].id | https://openalex.org/keywords/pattern-recognition |
| keywords[4].score | 0.4958849847316742 |
| keywords[4].display_name | Pattern recognition (psychology) |
| keywords[5].id | https://openalex.org/keywords/component |
| keywords[5].score | 0.4934898614883423 |
| keywords[5].display_name | Component (thermodynamics) |
| keywords[6].id | https://openalex.org/keywords/feature |
| keywords[6].score | 0.4599745273590088 |
| keywords[6].display_name | Feature (linguistics) |
| keywords[7].id | https://openalex.org/keywords/code |
| keywords[7].score | 0.45932647585868835 |
| keywords[7].display_name | Code (set theory) |
| keywords[8].id | https://openalex.org/keywords/margin |
| keywords[8].score | 0.451331228017807 |
| keywords[8].display_name | Margin (machine learning) |
| keywords[9].id | https://openalex.org/keywords/perception |
| keywords[9].score | 0.4244038462638855 |
| keywords[9].display_name | Perception |
| keywords[10].id | https://openalex.org/keywords/natural-language-processing |
| keywords[10].score | 0.3918342590332031 |
| keywords[10].display_name | Natural language processing |
| keywords[11].id | https://openalex.org/keywords/speech-recognition |
| keywords[11].score | 0.3410831689834595 |
| keywords[11].display_name | Speech recognition |
| keywords[12].id | https://openalex.org/keywords/machine-learning |
| keywords[12].score | 0.2369108498096466 |
| keywords[12].display_name | Machine learning |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2205.00159 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2205.00159 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2205.00159 |
| locations[1].id | doi:10.48550/arxiv.2205.00159 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | cc-by |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | https://openalex.org/licenses/cc-by |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2205.00159 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5102915298 |
| authorships[0].author.orcid | https://orcid.org/0009-0000-9859-721X |
| authorships[0].author.display_name | Yongkun Du |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Du, Yongkun |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5080463909 |
| authorships[1].author.orcid | https://orcid.org/0000-0003-1543-6889 |
| authorships[1].author.display_name | Zhineng Chen |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Chen, Zhineng |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5085282915 |
| authorships[2].author.orcid | https://orcid.org/0000-0003-0650-9564 |
| authorships[2].author.display_name | Caiyan Jia |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Jia, Caiyan |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5034820064 |
| authorships[3].author.orcid | https://orcid.org/0000-0001-7708-7819 |
| authorships[3].author.display_name | Xiaoting Yin |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Yin, Xiaoting |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5102496363 |
| authorships[4].author.orcid | |
| authorships[4].author.display_name | Tianlun Zheng |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Zheng, Tianlun |
| authorships[4].is_corresponding | False |
| authorships[5].author.id | https://openalex.org/A5103082468 |
| authorships[5].author.orcid | https://orcid.org/0000-0003-0321-5675 |
| authorships[5].author.display_name | Chenxia Li |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Li, Chenxia |
| authorships[5].is_corresponding | False |
| authorships[6].author.id | https://openalex.org/A5010944460 |
| authorships[6].author.orcid | https://orcid.org/0009-0007-4995-5472 |
| authorships[6].author.display_name | Yuning Du |
| authorships[6].author_position | middle |
| authorships[6].raw_author_name | Du, Yuning |
| authorships[6].is_corresponding | False |
| authorships[7].author.id | https://openalex.org/A5047962986 |
| authorships[7].author.orcid | https://orcid.org/0000-0002-1907-8567 |
| authorships[7].author.display_name | Yu–Gang Jiang |
| authorships[7].author_position | last |
| authorships[7].raw_author_name | Jiang, Yu-Gang |
| authorships[7].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2205.00159 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | SVTR: Scene Text Recognition with a Single Visual Model |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T10601 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9995999932289124 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1707 |
| primary_topic.subfield.display_name | Computer Vision and Pattern Recognition |
| primary_topic.display_name | Handwritten Text Recognition Techniques |
| related_works | https://openalex.org/W4251972423, https://openalex.org/W1503216044, https://openalex.org/W2393609567, https://openalex.org/W2369369044, https://openalex.org/W2354143083, https://openalex.org/W2372906645, https://openalex.org/W4319998713, https://openalex.org/W2366269494, https://openalex.org/W2353650902, https://openalex.org/W3125011624 |
| cited_by_count | 25 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 4 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 12 |
| counts_by_year[2].year | 2023 |
| counts_by_year[2].cited_by_count | 9 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2205.00159 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2205.00159 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2205.00159 |
| primary_location.id | pmh:oai:arXiv.org:2205.00159 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2205.00159 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2205.00159 |
| publication_date | 2022-04-30 |
| publication_year | 2022 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 10, 17, 38, 103, 113, 146 |
| abstract_inverted_index.In | 33, 154 |
| abstract_inverted_index.an | 65, 159 |
| abstract_inverted_index.at | 169, 176 |
| abstract_inverted_index.by | 81, 112, 145 |
| abstract_inverted_index.in | 139, 149 |
| abstract_inverted_index.is | 28, 158, 173 |
| abstract_inverted_index.of | 131 |
| abstract_inverted_index.on | 119 |
| abstract_inverted_index.to | 94, 102 |
| abstract_inverted_index.we | 36 |
| abstract_inverted_index.The | 59, 171 |
| abstract_inverted_index.and | 16, 30, 88, 98, 122, 141, 161 |
| abstract_inverted_index.are | 77, 92, 110 |
| abstract_inverted_index.for | 13, 20, 42 |
| abstract_inverted_index.out | 80 |
| abstract_inverted_index.the | 47, 55, 96, 129 |
| abstract_inverted_index.two | 7 |
| abstract_inverted_index.Text | 44 |
| abstract_inverted_index.This | 23 |
| abstract_inverted_index.both | 120 |
| abstract_inverted_index.code | 172 |
| abstract_inverted_index.into | 68 |
| abstract_inverted_index.less | 31 |
| abstract_inverted_index.much | 162 |
| abstract_inverted_index.text | 2, 21, 67, 125 |
| abstract_inverted_index.this | 34 |
| abstract_inverted_index.with | 54 |
| abstract_inverted_index.SVTR, | 62 |
| abstract_inverted_index.SVTR. | 132 |
| abstract_inverted_index.Scene | 43 |
| abstract_inverted_index.Thus, | 108 |
| abstract_inverted_index.image | 49, 66 |
| abstract_inverted_index.large | 147 |
| abstract_inverted_index.local | 89 |
| abstract_inverted_index.model | 12, 19, 41 |
| abstract_inverted_index.named | 71 |
| abstract_inverted_index.scene | 1, 124 |
| abstract_inverted_index.shows | 166 |
| abstract_inverted_index.small | 69 |
| abstract_inverted_index.speed | 168 |
| abstract_inverted_index.tasks | 127 |
| abstract_inverted_index.which | 52, 165 |
| abstract_inverted_index.while | 151 |
| abstract_inverted_index.(Tiny) | 157 |
| abstract_inverted_index.Global | 87 |
| abstract_inverted_index.SVTR-L | 133 |
| abstract_inverted_index.SVTR-T | 156 |
| abstract_inverted_index.Single | 39 |
| abstract_inverted_index.Visual | 40 |
| abstract_inverted_index.and/or | 85 |
| abstract_inverted_index.blocks | 91 |
| abstract_inverted_index.highly | 136 |
| abstract_inverted_index.hybrid | 24 |
| abstract_inverted_index.linear | 115 |
| abstract_inverted_index.margin | 148 |
| abstract_inverted_index.mixing | 90 |
| abstract_inverted_index.model, | 164 |
| abstract_inverted_index.models | 4 |
| abstract_inverted_index.simple | 114 |
| abstract_inverted_index.stages | 76 |
| abstract_inverted_index.study, | 35 |
| abstract_inverted_index.termed | 61 |
| abstract_inverted_index.visual | 11 |
| abstract_inverted_index.within | 46 |
| abstract_inverted_index.(Large) | 134 |
| abstract_inverted_index.Chinese | 123 |
| abstract_inverted_index.English | 121, 140 |
| abstract_inverted_index.blocks, | 9 |
| abstract_inverted_index.carried | 79 |
| abstract_inverted_index.complex | 29 |
| abstract_inverted_index.contain | 6 |
| abstract_inverted_index.devised | 93 |
| abstract_inverted_index.faster. | 153 |
| abstract_inverted_index.feature | 14 |
| abstract_inverted_index.firstly | 63 |
| abstract_inverted_index.leading | 101 |
| abstract_inverted_index.merging | 84 |
| abstract_inverted_index.method, | 60 |
| abstract_inverted_index.methods | 144 |
| abstract_inverted_index.mixing, | 83 |
| abstract_inverted_index.patches | 70 |
| abstract_inverted_index.propose | 37 |
| abstract_inverted_index.results | 118 |
| abstract_inverted_index.running | 152 |
| abstract_inverted_index.smaller | 163 |
| abstract_inverted_index.Chinese, | 150 |
| abstract_inverted_index.Dominant | 0 |
| abstract_inverted_index.accuracy | 138 |
| abstract_inverted_index.achieves | 135 |
| abstract_inverted_index.although | 26 |
| abstract_inverted_index.building | 8 |
| abstract_inverted_index.commonly | 5 |
| abstract_inverted_index.existing | 143 |
| abstract_inverted_index.modeling | 57 |
| abstract_inverted_index.perceive | 95 |
| abstract_inverted_index.publicly | 174 |
| abstract_inverted_index.sequence | 18 |
| abstract_inverted_index.accurate, | 27 |
| abstract_inverted_index.addition, | 155 |
| abstract_inverted_index.appealing | 167 |
| abstract_inverted_index.available | 175 |
| abstract_inverted_index.character | 72, 105 |
| abstract_inverted_index.component | 106 |
| abstract_inverted_index.dispenses | 53 |
| abstract_inverted_index.effective | 160 |
| abstract_inverted_index.entirely. | 58 |
| abstract_inverted_index.patterns, | 100 |
| abstract_inverted_index.Afterward, | 74 |
| abstract_inverted_index.characters | 109 |
| abstract_inverted_index.combining. | 86 |
| abstract_inverted_index.decomposes | 64 |
| abstract_inverted_index.efficient. | 32 |
| abstract_inverted_index.extraction | 15 |
| abstract_inverted_index.framework, | 51 |
| abstract_inverted_index.inference. | 170 |
| abstract_inverted_index.patch-wise | 48 |
| abstract_inverted_index.recognized | 111 |
| abstract_inverted_index.sequential | 56 |
| abstract_inverted_index.competitive | 137 |
| abstract_inverted_index.components. | 73 |
| abstract_inverted_index.demonstrate | 128 |
| abstract_inverted_index.outperforms | 142 |
| abstract_inverted_index.perception. | 107 |
| abstract_inverted_index.prediction. | 116 |
| abstract_inverted_index.recognition | 3, 45, 126 |
| abstract_inverted_index.recurrently | 78 |
| abstract_inverted_index.Experimental | 117 |
| abstract_inverted_index.hierarchical | 75 |
| abstract_inverted_index.tokenization | 50 |
| abstract_inverted_index.architecture, | 25 |
| abstract_inverted_index.effectiveness | 130 |
| abstract_inverted_index.multi-grained | 104 |
| abstract_inverted_index.transcription. | 22 |
| abstract_inverted_index.component-level | 82 |
| abstract_inverted_index.inter-character | 97 |
| abstract_inverted_index.intra-character | 99 |
| abstract_inverted_index.https://github.com/PaddlePaddle/PaddleOCR. | 177 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 8 |
| citation_normalized_percentile |