SWE-RL: Advancing LLM Reasoning via Reinforcement Learning on Open Software Evolution Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2502.18449
The recent DeepSeek-R1 release has demonstrated the immense potential of reinforcement learning (RL) in enhancing the general reasoning capabilities of large language models (LLMs). While DeepSeek-R1 and other follow-up work primarily focus on applying RL to competitive coding and math problems, this paper introduces SWE-RL, the first approach to scale RL-based LLM reasoning for real-world software engineering. Leveraging a lightweight rule-based reward (e.g., the similarity score between ground-truth and LLM-generated solutions), SWE-RL enables LLMs to autonomously recover a developer's reasoning processes and solutions by learning from extensive open-source software evolution data -- the record of a software's entire lifecycle, including its code snapshots, code changes, and events such as issues and pull requests. Trained on top of Llama 3, our resulting reasoning model, Llama3-SWE-RL-70B, achieves a 41.0% solve rate on SWE-bench Verified -- a human-verified collection of real-world GitHub issues. To our knowledge, this is the best performance reported for medium-sized (<100B) LLMs to date, even comparable to leading proprietary LLMs like GPT-4o. Surprisingly, despite performing RL solely on software evolution data, Llama3-SWE-RL has even emerged with generalized reasoning skills. For example, it shows improved results on five out-of-domain tasks, namely, function coding, library use, code reasoning, mathematics, and general language understanding, whereas a supervised-finetuning baseline even leads to performance degradation on average. Overall, SWE-RL opens up a new direction to improve the reasoning capabilities of LLMs through reinforcement learning on massive software engineering data.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2502.18449
- https://arxiv.org/pdf/2502.18449
- OA Status
- green
- OpenAlex ID
- https://openalex.org/W4415189338
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4415189338Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2502.18449Digital Object Identifier
- Title
-
SWE-RL: Advancing LLM Reasoning via Reinforcement Learning on Open Software EvolutionWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-02-25Full publication date if available
- Authors
-
Yuxiang Wei, Olivier Duchenne, Jade Copet, Quentin Carbonneaux, Lingming Zhang, Daniel Fried, Gabriel Synnaeve, Rishabh Singh, Sida I. WangList of authors in order
- Landing page
-
https://arxiv.org/abs/2502.18449Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2502.18449Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2502.18449Direct OA link when available
- Cited by
-
0Total citation count in OpenAlex
Full payload
| id | https://openalex.org/W4415189338 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2502.18449 |
| ids.doi | https://doi.org/10.48550/arxiv.2502.18449 |
| ids.openalex | https://openalex.org/W4415189338 |
| fwci | |
| type | preprint |
| title | SWE-RL: Advancing LLM Reasoning via Reinforcement Learning on Open Software Evolution |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10260 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9269000291824341 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1710 |
| topics[0].subfield.display_name | Information Systems |
| topics[0].display_name | Software Engineering Research |
| topics[1].id | https://openalex.org/T10456 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9143999814987183 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1702 |
| topics[1].subfield.display_name | Artificial Intelligence |
| topics[1].display_name | Multi-Agent Systems and Negotiation |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2502.18449 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2502.18449 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2502.18449 |
| locations[1].id | doi:10.48550/arxiv.2502.18449 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2502.18449 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5058312928 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-4391-3753 |
| authorships[0].author.display_name | Yuxiang Wei |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Wei, Yuxiang |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5086412493 |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | Olivier Duchenne |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Duchenne, Olivier |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5020182193 |
| authorships[2].author.orcid | |
| authorships[2].author.display_name | Jade Copet |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Copet, Jade |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5120002517 |
| authorships[3].author.orcid | |
| authorships[3].author.display_name | Quentin Carbonneaux |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Carbonneaux, Quentin |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5043546718 |
| authorships[4].author.orcid | https://orcid.org/0000-0001-5175-2702 |
| authorships[4].author.display_name | Lingming Zhang |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Zhang, Lingming |
| authorships[4].is_corresponding | False |
| authorships[5].author.id | https://openalex.org/A5003637850 |
| authorships[5].author.orcid | https://orcid.org/0000-0002-5327-2558 |
| authorships[5].author.display_name | Daniel Fried |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Fried, Daniel |
| authorships[5].is_corresponding | False |
| authorships[6].author.id | https://openalex.org/A5016803317 |
| authorships[6].author.orcid | |
| authorships[6].author.display_name | Gabriel Synnaeve |
| authorships[6].author_position | middle |
| authorships[6].raw_author_name | Synnaeve, Gabriel |
| authorships[6].is_corresponding | False |
| authorships[7].author.id | https://openalex.org/A5101832593 |
| authorships[7].author.orcid | https://orcid.org/0000-0002-8950-4277 |
| authorships[7].author.display_name | Rishabh Singh |
| authorships[7].author_position | middle |
| authorships[7].raw_author_name | Singh, Rishabh |
| authorships[7].is_corresponding | False |
| authorships[8].author.id | https://openalex.org/A5084195779 |
| authorships[8].author.orcid | |
| authorships[8].author.display_name | Sida I. Wang |
| authorships[8].author_position | last |
| authorships[8].raw_author_name | Wang, Sida I. |
| authorships[8].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2502.18449 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-15T00:00:00 |
| display_name | SWE-RL: Advancing LLM Reasoning via Reinforcement Learning on Open Software Evolution |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T10260 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9269000291824341 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1710 |
| primary_topic.subfield.display_name | Information Systems |
| primary_topic.display_name | Software Engineering Research |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2502.18449 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2502.18449 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2502.18449 |
| primary_location.id | pmh:oai:arXiv.org:2502.18449 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2502.18449 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2502.18449 |
| publication_date | 2025-02-25 |
| publication_year | 2025 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 58, 77, 95, 125, 133, 203, 217 |
| abstract_inverted_index.-- | 91, 132 |
| abstract_inverted_index.3, | 118 |
| abstract_inverted_index.RL | 34, 166 |
| abstract_inverted_index.To | 140 |
| abstract_inverted_index.as | 108 |
| abstract_inverted_index.by | 83 |
| abstract_inverted_index.in | 13 |
| abstract_inverted_index.is | 144 |
| abstract_inverted_index.it | 182 |
| abstract_inverted_index.of | 9, 19, 94, 116, 136, 225 |
| abstract_inverted_index.on | 32, 114, 129, 168, 186, 211, 230 |
| abstract_inverted_index.to | 35, 48, 74, 153, 157, 208, 220 |
| abstract_inverted_index.up | 216 |
| abstract_inverted_index.For | 180 |
| abstract_inverted_index.LLM | 51 |
| abstract_inverted_index.The | 0 |
| abstract_inverted_index.and | 26, 38, 68, 81, 105, 110, 198 |
| abstract_inverted_index.for | 53, 149 |
| abstract_inverted_index.has | 4, 173 |
| abstract_inverted_index.its | 100 |
| abstract_inverted_index.new | 218 |
| abstract_inverted_index.our | 119, 141 |
| abstract_inverted_index.the | 6, 15, 45, 63, 92, 145, 222 |
| abstract_inverted_index.top | 115 |
| abstract_inverted_index.(RL) | 12 |
| abstract_inverted_index.LLMs | 73, 152, 160, 226 |
| abstract_inverted_index.best | 146 |
| abstract_inverted_index.code | 101, 103, 195 |
| abstract_inverted_index.data | 90 |
| abstract_inverted_index.even | 155, 174, 206 |
| abstract_inverted_index.five | 187 |
| abstract_inverted_index.from | 85 |
| abstract_inverted_index.like | 161 |
| abstract_inverted_index.math | 39 |
| abstract_inverted_index.pull | 111 |
| abstract_inverted_index.rate | 128 |
| abstract_inverted_index.such | 107 |
| abstract_inverted_index.this | 41, 143 |
| abstract_inverted_index.use, | 194 |
| abstract_inverted_index.with | 176 |
| abstract_inverted_index.work | 29 |
| abstract_inverted_index.41.0% | 126 |
| abstract_inverted_index.Llama | 117 |
| abstract_inverted_index.While | 24 |
| abstract_inverted_index.data, | 171 |
| abstract_inverted_index.data. | 234 |
| abstract_inverted_index.date, | 154 |
| abstract_inverted_index.first | 46 |
| abstract_inverted_index.focus | 31 |
| abstract_inverted_index.large | 20 |
| abstract_inverted_index.leads | 207 |
| abstract_inverted_index.opens | 215 |
| abstract_inverted_index.other | 27 |
| abstract_inverted_index.paper | 42 |
| abstract_inverted_index.scale | 49 |
| abstract_inverted_index.score | 65 |
| abstract_inverted_index.shows | 183 |
| abstract_inverted_index.solve | 127 |
| abstract_inverted_index.(e.g., | 62 |
| abstract_inverted_index.GitHub | 138 |
| abstract_inverted_index.SWE-RL | 71, 214 |
| abstract_inverted_index.coding | 37 |
| abstract_inverted_index.entire | 97 |
| abstract_inverted_index.events | 106 |
| abstract_inverted_index.issues | 109 |
| abstract_inverted_index.model, | 122 |
| abstract_inverted_index.models | 22 |
| abstract_inverted_index.recent | 1 |
| abstract_inverted_index.record | 93 |
| abstract_inverted_index.reward | 61 |
| abstract_inverted_index.solely | 167 |
| abstract_inverted_index.tasks, | 189 |
| abstract_inverted_index.(LLMs). | 23 |
| abstract_inverted_index.GPT-4o. | 162 |
| abstract_inverted_index.SWE-RL, | 44 |
| abstract_inverted_index.Trained | 113 |
| abstract_inverted_index.between | 66 |
| abstract_inverted_index.coding, | 192 |
| abstract_inverted_index.despite | 164 |
| abstract_inverted_index.emerged | 175 |
| abstract_inverted_index.enables | 72 |
| abstract_inverted_index.general | 16, 199 |
| abstract_inverted_index.immense | 7 |
| abstract_inverted_index.improve | 221 |
| abstract_inverted_index.issues. | 139 |
| abstract_inverted_index.leading | 158 |
| abstract_inverted_index.library | 193 |
| abstract_inverted_index.massive | 231 |
| abstract_inverted_index.namely, | 190 |
| abstract_inverted_index.recover | 76 |
| abstract_inverted_index.release | 3 |
| abstract_inverted_index.results | 185 |
| abstract_inverted_index.skills. | 179 |
| abstract_inverted_index.through | 227 |
| abstract_inverted_index.whereas | 202 |
| abstract_inverted_index.Overall, | 213 |
| abstract_inverted_index.RL-based | 50 |
| abstract_inverted_index.Verified | 131 |
| abstract_inverted_index.achieves | 124 |
| abstract_inverted_index.applying | 33 |
| abstract_inverted_index.approach | 47 |
| abstract_inverted_index.average. | 212 |
| abstract_inverted_index.baseline | 205 |
| abstract_inverted_index.changes, | 104 |
| abstract_inverted_index.example, | 181 |
| abstract_inverted_index.function | 191 |
| abstract_inverted_index.improved | 184 |
| abstract_inverted_index.language | 21, 200 |
| abstract_inverted_index.learning | 11, 84, 229 |
| abstract_inverted_index.reported | 148 |
| abstract_inverted_index.software | 55, 88, 169, 232 |
| abstract_inverted_index.SWE-bench | 130 |
| abstract_inverted_index.direction | 219 |
| abstract_inverted_index.enhancing | 14 |
| abstract_inverted_index.evolution | 89, 170 |
| abstract_inverted_index.extensive | 86 |
| abstract_inverted_index.follow-up | 28 |
| abstract_inverted_index.including | 99 |
| abstract_inverted_index.potential | 8 |
| abstract_inverted_index.primarily | 30 |
| abstract_inverted_index.problems, | 40 |
| abstract_inverted_index.processes | 80 |
| abstract_inverted_index.reasoning | 17, 52, 79, 121, 178, 223 |
| abstract_inverted_index.requests. | 112 |
| abstract_inverted_index.resulting | 120 |
| abstract_inverted_index.solutions | 82 |
| abstract_inverted_index.(<100B) | 151 |
| abstract_inverted_index.Leveraging | 57 |
| abstract_inverted_index.collection | 135 |
| abstract_inverted_index.comparable | 156 |
| abstract_inverted_index.introduces | 43 |
| abstract_inverted_index.knowledge, | 142 |
| abstract_inverted_index.lifecycle, | 98 |
| abstract_inverted_index.performing | 165 |
| abstract_inverted_index.real-world | 54, 137 |
| abstract_inverted_index.reasoning, | 196 |
| abstract_inverted_index.rule-based | 60 |
| abstract_inverted_index.similarity | 64 |
| abstract_inverted_index.snapshots, | 102 |
| abstract_inverted_index.software's | 96 |
| abstract_inverted_index.DeepSeek-R1 | 2, 25 |
| abstract_inverted_index.competitive | 36 |
| abstract_inverted_index.degradation | 210 |
| abstract_inverted_index.developer's | 78 |
| abstract_inverted_index.engineering | 233 |
| abstract_inverted_index.generalized | 177 |
| abstract_inverted_index.lightweight | 59 |
| abstract_inverted_index.open-source | 87 |
| abstract_inverted_index.performance | 147, 209 |
| abstract_inverted_index.proprietary | 159 |
| abstract_inverted_index.solutions), | 70 |
| abstract_inverted_index.autonomously | 75 |
| abstract_inverted_index.capabilities | 18, 224 |
| abstract_inverted_index.demonstrated | 5 |
| abstract_inverted_index.engineering. | 56 |
| abstract_inverted_index.ground-truth | 67 |
| abstract_inverted_index.mathematics, | 197 |
| abstract_inverted_index.medium-sized | 150 |
| abstract_inverted_index.LLM-generated | 69 |
| abstract_inverted_index.Llama3-SWE-RL | 172 |
| abstract_inverted_index.Surprisingly, | 163 |
| abstract_inverted_index.out-of-domain | 188 |
| abstract_inverted_index.reinforcement | 10, 228 |
| abstract_inverted_index.human-verified | 134 |
| abstract_inverted_index.understanding, | 201 |
| abstract_inverted_index.Llama3-SWE-RL-70B, | 123 |
| abstract_inverted_index.supervised-finetuning | 204 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 9 |
| citation_normalized_percentile |