SwiftNet: Using Graph Propagation as Meta-knowledge to Search Highly Representative Neural Architectures Article Swipe
YOU?
·
· 2019
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.1906.08305
Designing neural architectures for edge devices is subject to constraints of accuracy, inference latency, and computational cost. Traditionally, researchers manually craft deep neural networks to meet the needs of mobile devices. Neural Architecture Search (NAS) was proposed to automate the neural architecture design without requiring extensive domain expertise and significant manual efforts. Recent works utilized NAS to design mobile models by taking into account hardware constraints and achieved state-of-the-art accuracy with fewer parameters and less computational cost measured in Multiply-accumulates (MACs). To find highly compact neural architectures, existing works relies on predefined cells and directly applying width multiplier, which may potentially limit the model flexibility, reduce the useful feature map information, and cause accuracy drop. To conquer this issue, we propose GRAM(GRAph propagation as Meta-knowledge) that adopts fine-grained (node-wise) search method and accumulates the knowledge learned in updates into a meta-graph. As a result, GRAM can enable more flexible search space and achieve higher search efficiency. Without the constraints of predefined cell or blocks, we propose a new structure-level pruning method to remove redundant operations in neural architectures. SwiftNet, which is a set of models discovered by GRAM, outperforms MobileNet-V2 by 2.15x higher accuracy density and 2.42x faster with similar accuracy. Compared with FBNet, SwiftNet reduces the search cost by 26x and achieves 2.35x higher accuracy density and 1.47x speedup while preserving similar accuracy. SwiftNetcan obtain 63.28% top-1 accuracy on ImageNet-1K with only 53M MACs and 2.07M parameters. The corresponding inference latency is only 19.09 ms on Google Pixel 1.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/1906.08305
- https://arxiv.org/pdf/1906.08305
- OA Status
- green
- Cited By
- 8
- References
- 36
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W2951427637
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W2951427637Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.1906.08305Digital Object Identifier
- Title
-
SwiftNet: Using Graph Propagation as Meta-knowledge to Search Highly Representative Neural ArchitecturesWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2019Year of publication
- Publication date
-
2019-06-19Full publication date if available
- Authors
-
Hsin-Pai Cheng, Tunhou Zhang, Yukun Yang, Feng Yan, Shiyu Li, Harris Teague, Hai Li, Yiran ChenList of authors in order
- Landing page
-
https://arxiv.org/abs/1906.08305Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/1906.08305Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/1906.08305Direct OA link when available
- Concepts
-
Computer science, Knowledge graph, Graph, Artificial neural network, Artificial intelligence, Theoretical computer scienceTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
8Total citation count in OpenAlex
- Citations by year (recent)
-
2023: 1, 2021: 3, 2020: 3, 2019: 1Per-year citation counts (last 5 years)
- References (count)
-
36Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W2951427637 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.1906.08305 |
| ids.doi | https://doi.org/10.48550/arxiv.1906.08305 |
| ids.mag | 2951427637 |
| ids.openalex | https://openalex.org/W2951427637 |
| fwci | |
| type | preprint |
| title | SwiftNet: Using Graph Propagation as Meta-knowledge to Search Highly Representative Neural Architectures |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10036 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9991999864578247 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1707 |
| topics[0].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[0].display_name | Advanced Neural Network Applications |
| topics[1].id | https://openalex.org/T11689 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9987000226974487 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1702 |
| topics[1].subfield.display_name | Artificial Intelligence |
| topics[1].display_name | Adversarial Robustness in Machine Learning |
| topics[2].id | https://openalex.org/T12535 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9980000257492065 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1702 |
| topics[2].subfield.display_name | Artificial Intelligence |
| topics[2].display_name | Machine Learning and Data Classification |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C41008148 |
| concepts[0].level | 0 |
| concepts[0].score | 0.5681430101394653 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[0].display_name | Computer science |
| concepts[1].id | https://openalex.org/C2987255567 |
| concepts[1].level | 2 |
| concepts[1].score | 0.5576549768447876 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q33002955 |
| concepts[1].display_name | Knowledge graph |
| concepts[2].id | https://openalex.org/C132525143 |
| concepts[2].level | 2 |
| concepts[2].score | 0.5209264159202576 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q141488 |
| concepts[2].display_name | Graph |
| concepts[3].id | https://openalex.org/C50644808 |
| concepts[3].level | 2 |
| concepts[3].score | 0.45333418250083923 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q192776 |
| concepts[3].display_name | Artificial neural network |
| concepts[4].id | https://openalex.org/C154945302 |
| concepts[4].level | 1 |
| concepts[4].score | 0.3819201588630676 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[4].display_name | Artificial intelligence |
| concepts[5].id | https://openalex.org/C80444323 |
| concepts[5].level | 1 |
| concepts[5].score | 0.29778993129730225 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q2878974 |
| concepts[5].display_name | Theoretical computer science |
| keywords[0].id | https://openalex.org/keywords/computer-science |
| keywords[0].score | 0.5681430101394653 |
| keywords[0].display_name | Computer science |
| keywords[1].id | https://openalex.org/keywords/knowledge-graph |
| keywords[1].score | 0.5576549768447876 |
| keywords[1].display_name | Knowledge graph |
| keywords[2].id | https://openalex.org/keywords/graph |
| keywords[2].score | 0.5209264159202576 |
| keywords[2].display_name | Graph |
| keywords[3].id | https://openalex.org/keywords/artificial-neural-network |
| keywords[3].score | 0.45333418250083923 |
| keywords[3].display_name | Artificial neural network |
| keywords[4].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[4].score | 0.3819201588630676 |
| keywords[4].display_name | Artificial intelligence |
| keywords[5].id | https://openalex.org/keywords/theoretical-computer-science |
| keywords[5].score | 0.29778993129730225 |
| keywords[5].display_name | Theoretical computer science |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:1906.08305 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/1906.08305 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/1906.08305 |
| locations[1].id | doi:10.48550/arxiv.1906.08305 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | public-domain |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | https://openalex.org/licenses/public-domain |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.1906.08305 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5103877341 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Hsin-Pai Cheng |
| authorships[0].countries | DE |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I4210138373 |
| authorships[0].affiliations[0].raw_affiliation_string | Dave |
| authorships[0].institutions[0].id | https://openalex.org/I4210138373 |
| authorships[0].institutions[0].ror | https://ror.org/038ftp957 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I4210138373 |
| authorships[0].institutions[0].country_code | DE |
| authorships[0].institutions[0].display_name | German Foreign Trade and Transport Academy |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Hsin-Pai Cheng |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Dave |
| authorships[1].author.id | https://openalex.org/A5052236334 |
| authorships[1].author.orcid | https://orcid.org/0000-0001-9590-9433 |
| authorships[1].author.display_name | Tunhou Zhang |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Tunhou Zhang |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5032351755 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-3570-1494 |
| authorships[2].author.display_name | Yukun Yang |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Yukun Yang |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5101527301 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-2683-8878 |
| authorships[3].author.display_name | Feng Yan |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Feng Yan |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5100413190 |
| authorships[4].author.orcid | https://orcid.org/0000-0002-1990-7150 |
| authorships[4].author.display_name | Shiyu Li |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Shiyu Li |
| authorships[4].is_corresponding | False |
| authorships[5].author.id | https://openalex.org/A5070190311 |
| authorships[5].author.orcid | https://orcid.org/0000-0002-9409-5674 |
| authorships[5].author.display_name | Harris Teague |
| authorships[5].affiliations[0].raw_affiliation_string | Hai (Helen)Li |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Harris Teague |
| authorships[5].is_corresponding | False |
| authorships[5].raw_affiliation_strings | Hai (Helen)Li |
| authorships[6].author.id | https://openalex.org/A5100429403 |
| authorships[6].author.orcid | https://orcid.org/0000-0003-3228-6544 |
| authorships[6].author.display_name | Hai Li |
| authorships[6].affiliations[0].raw_affiliation_string | Hai (Helen)Li |
| authorships[6].author_position | middle |
| authorships[6].raw_author_name | Hai Helen Li |
| authorships[6].is_corresponding | False |
| authorships[6].raw_affiliation_strings | Hai (Helen)Li |
| authorships[7].author.id | https://openalex.org/A5058073627 |
| authorships[7].author.orcid | https://orcid.org/0000-0002-1486-8412 |
| authorships[7].author.display_name | Yiran Chen |
| authorships[7].author_position | last |
| authorships[7].raw_author_name | Yiran Chen |
| authorships[7].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/1906.08305 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | SwiftNet: Using Graph Propagation as Meta-knowledge to Search Highly Representative Neural Architectures |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T10036 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9991999864578247 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1707 |
| primary_topic.subfield.display_name | Computer Vision and Pattern Recognition |
| primary_topic.display_name | Advanced Neural Network Applications |
| related_works | https://openalex.org/W4391375266, https://openalex.org/W2748952813, https://openalex.org/W2390279801, https://openalex.org/W2358668433, https://openalex.org/W2376932109, https://openalex.org/W2001405890, https://openalex.org/W2382290278, https://openalex.org/W2478288626, https://openalex.org/W4391913857, https://openalex.org/W2054026175 |
| cited_by_count | 8 |
| counts_by_year[0].year | 2023 |
| counts_by_year[0].cited_by_count | 1 |
| counts_by_year[1].year | 2021 |
| counts_by_year[1].cited_by_count | 3 |
| counts_by_year[2].year | 2020 |
| counts_by_year[2].cited_by_count | 3 |
| counts_by_year[3].year | 2019 |
| counts_by_year[3].cited_by_count | 1 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:1906.08305 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/1906.08305 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/1906.08305 |
| primary_location.id | pmh:oai:arXiv.org:1906.08305 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/1906.08305 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/1906.08305 |
| publication_date | 2019-06-19 |
| publication_year | 2019 |
| referenced_works | https://openalex.org/W104184427, https://openalex.org/W2967733054, https://openalex.org/W2964331719, https://openalex.org/W2279098554, https://openalex.org/W2184045248, https://openalex.org/W2183341477, https://openalex.org/W2962861284, https://openalex.org/W2965658867, https://openalex.org/W2116341502, https://openalex.org/W2963446712, https://openalex.org/W2594529350, https://openalex.org/W2964081807, https://openalex.org/W2963374479, https://openalex.org/W2886851211, https://openalex.org/W2750384547, https://openalex.org/W2612445135, https://openalex.org/W3118608800, https://openalex.org/W2112796928, https://openalex.org/W2963341956, https://openalex.org/W2963206679, https://openalex.org/W2108598243, https://openalex.org/W2950898568, https://openalex.org/W2599765304, https://openalex.org/W2964015378, https://openalex.org/W2963285578, https://openalex.org/W2964217527, https://openalex.org/W2963163009, https://openalex.org/W2335728318, https://openalex.org/W2962746461, https://openalex.org/W2962847160, https://openalex.org/W2963918968, https://openalex.org/W1969722113, https://openalex.org/W2897818259, https://openalex.org/W2980137827, https://openalex.org/W2810075754, https://openalex.org/W2964259004 |
| referenced_works_count | 36 |
| abstract_inverted_index.a | 139, 142, 166, 181 |
| abstract_inverted_index.1. | 249 |
| abstract_inverted_index.As | 141 |
| abstract_inverted_index.To | 81, 115 |
| abstract_inverted_index.as | 123 |
| abstract_inverted_index.by | 60, 186, 190, 209 |
| abstract_inverted_index.in | 78, 136, 175 |
| abstract_inverted_index.is | 6, 180, 242 |
| abstract_inverted_index.ms | 245 |
| abstract_inverted_index.of | 10, 28, 159, 183 |
| abstract_inverted_index.on | 90, 229, 246 |
| abstract_inverted_index.or | 162 |
| abstract_inverted_index.to | 8, 24, 37, 56, 171 |
| abstract_inverted_index.we | 119, 164 |
| abstract_inverted_index.26x | 210 |
| abstract_inverted_index.53M | 233 |
| abstract_inverted_index.NAS | 55 |
| abstract_inverted_index.The | 238 |
| abstract_inverted_index.and | 14, 48, 66, 73, 93, 111, 131, 151, 195, 211, 217, 235 |
| abstract_inverted_index.can | 145 |
| abstract_inverted_index.for | 3 |
| abstract_inverted_index.map | 109 |
| abstract_inverted_index.may | 99 |
| abstract_inverted_index.new | 167 |
| abstract_inverted_index.set | 182 |
| abstract_inverted_index.the | 26, 39, 102, 106, 133, 157, 206 |
| abstract_inverted_index.was | 35 |
| abstract_inverted_index.GRAM | 144 |
| abstract_inverted_index.MACs | 234 |
| abstract_inverted_index.cell | 161 |
| abstract_inverted_index.cost | 76, 208 |
| abstract_inverted_index.deep | 21 |
| abstract_inverted_index.edge | 4 |
| abstract_inverted_index.find | 82 |
| abstract_inverted_index.into | 62, 138 |
| abstract_inverted_index.less | 74 |
| abstract_inverted_index.meet | 25 |
| abstract_inverted_index.more | 147 |
| abstract_inverted_index.only | 232, 243 |
| abstract_inverted_index.that | 125 |
| abstract_inverted_index.this | 117 |
| abstract_inverted_index.with | 70, 198, 202, 231 |
| abstract_inverted_index.(NAS) | 34 |
| abstract_inverted_index.1.47x | 218 |
| abstract_inverted_index.19.09 | 244 |
| abstract_inverted_index.2.07M | 236 |
| abstract_inverted_index.2.15x | 191 |
| abstract_inverted_index.2.35x | 213 |
| abstract_inverted_index.2.42x | 196 |
| abstract_inverted_index.GRAM, | 187 |
| abstract_inverted_index.Pixel | 248 |
| abstract_inverted_index.cause | 112 |
| abstract_inverted_index.cells | 92 |
| abstract_inverted_index.cost. | 16 |
| abstract_inverted_index.craft | 20 |
| abstract_inverted_index.drop. | 114 |
| abstract_inverted_index.fewer | 71 |
| abstract_inverted_index.limit | 101 |
| abstract_inverted_index.model | 103 |
| abstract_inverted_index.needs | 27 |
| abstract_inverted_index.space | 150 |
| abstract_inverted_index.top-1 | 227 |
| abstract_inverted_index.which | 98, 179 |
| abstract_inverted_index.while | 220 |
| abstract_inverted_index.width | 96 |
| abstract_inverted_index.works | 53, 88 |
| abstract_inverted_index.63.28% | 226 |
| abstract_inverted_index.FBNet, | 203 |
| abstract_inverted_index.Google | 247 |
| abstract_inverted_index.Neural | 31 |
| abstract_inverted_index.Recent | 52 |
| abstract_inverted_index.Search | 33 |
| abstract_inverted_index.adopts | 126 |
| abstract_inverted_index.design | 42, 57 |
| abstract_inverted_index.domain | 46 |
| abstract_inverted_index.enable | 146 |
| abstract_inverted_index.faster | 197 |
| abstract_inverted_index.higher | 153, 192, 214 |
| abstract_inverted_index.highly | 83 |
| abstract_inverted_index.issue, | 118 |
| abstract_inverted_index.manual | 50 |
| abstract_inverted_index.method | 130, 170 |
| abstract_inverted_index.mobile | 29, 58 |
| abstract_inverted_index.models | 59, 184 |
| abstract_inverted_index.neural | 1, 22, 40, 85, 176 |
| abstract_inverted_index.obtain | 225 |
| abstract_inverted_index.reduce | 105 |
| abstract_inverted_index.relies | 89 |
| abstract_inverted_index.remove | 172 |
| abstract_inverted_index.search | 129, 149, 154, 207 |
| abstract_inverted_index.taking | 61 |
| abstract_inverted_index.useful | 107 |
| abstract_inverted_index.(MACs). | 80 |
| abstract_inverted_index.Without | 156 |
| abstract_inverted_index.account | 63 |
| abstract_inverted_index.achieve | 152 |
| abstract_inverted_index.blocks, | 163 |
| abstract_inverted_index.compact | 84 |
| abstract_inverted_index.conquer | 116 |
| abstract_inverted_index.density | 194, 216 |
| abstract_inverted_index.devices | 5 |
| abstract_inverted_index.feature | 108 |
| abstract_inverted_index.latency | 241 |
| abstract_inverted_index.learned | 135 |
| abstract_inverted_index.propose | 120, 165 |
| abstract_inverted_index.pruning | 169 |
| abstract_inverted_index.reduces | 205 |
| abstract_inverted_index.result, | 143 |
| abstract_inverted_index.similar | 199, 222 |
| abstract_inverted_index.speedup | 219 |
| abstract_inverted_index.subject | 7 |
| abstract_inverted_index.updates | 137 |
| abstract_inverted_index.without | 43 |
| abstract_inverted_index.Compared | 201 |
| abstract_inverted_index.SwiftNet | 204 |
| abstract_inverted_index.accuracy | 69, 113, 193, 215, 228 |
| abstract_inverted_index.achieved | 67 |
| abstract_inverted_index.achieves | 212 |
| abstract_inverted_index.applying | 95 |
| abstract_inverted_index.automate | 38 |
| abstract_inverted_index.devices. | 30 |
| abstract_inverted_index.directly | 94 |
| abstract_inverted_index.efforts. | 51 |
| abstract_inverted_index.existing | 87 |
| abstract_inverted_index.flexible | 148 |
| abstract_inverted_index.hardware | 64 |
| abstract_inverted_index.latency, | 13 |
| abstract_inverted_index.manually | 19 |
| abstract_inverted_index.measured | 77 |
| abstract_inverted_index.networks | 23 |
| abstract_inverted_index.proposed | 36 |
| abstract_inverted_index.utilized | 54 |
| abstract_inverted_index.Designing | 0 |
| abstract_inverted_index.SwiftNet, | 178 |
| abstract_inverted_index.accuracy, | 11 |
| abstract_inverted_index.accuracy. | 200, 223 |
| abstract_inverted_index.expertise | 47 |
| abstract_inverted_index.extensive | 45 |
| abstract_inverted_index.inference | 12, 240 |
| abstract_inverted_index.knowledge | 134 |
| abstract_inverted_index.redundant | 173 |
| abstract_inverted_index.requiring | 44 |
| abstract_inverted_index.GRAM(GRAph | 121 |
| abstract_inverted_index.discovered | 185 |
| abstract_inverted_index.operations | 174 |
| abstract_inverted_index.parameters | 72 |
| abstract_inverted_index.predefined | 91, 160 |
| abstract_inverted_index.preserving | 221 |
| abstract_inverted_index.(node-wise) | 128 |
| abstract_inverted_index.ImageNet-1K | 230 |
| abstract_inverted_index.SwiftNetcan | 224 |
| abstract_inverted_index.accumulates | 132 |
| abstract_inverted_index.constraints | 9, 65, 158 |
| abstract_inverted_index.efficiency. | 155 |
| abstract_inverted_index.meta-graph. | 140 |
| abstract_inverted_index.multiplier, | 97 |
| abstract_inverted_index.outperforms | 188 |
| abstract_inverted_index.parameters. | 237 |
| abstract_inverted_index.potentially | 100 |
| abstract_inverted_index.propagation | 122 |
| abstract_inverted_index.researchers | 18 |
| abstract_inverted_index.significant | 49 |
| abstract_inverted_index.Architecture | 32 |
| abstract_inverted_index.MobileNet-V2 | 189 |
| abstract_inverted_index.architecture | 41 |
| abstract_inverted_index.fine-grained | 127 |
| abstract_inverted_index.flexibility, | 104 |
| abstract_inverted_index.information, | 110 |
| abstract_inverted_index.architectures | 2 |
| abstract_inverted_index.computational | 15, 75 |
| abstract_inverted_index.corresponding | 239 |
| abstract_inverted_index.Traditionally, | 17 |
| abstract_inverted_index.architectures, | 86 |
| abstract_inverted_index.architectures. | 177 |
| abstract_inverted_index.Meta-knowledge) | 124 |
| abstract_inverted_index.structure-level | 168 |
| abstract_inverted_index.state-of-the-art | 68 |
| abstract_inverted_index.Multiply-accumulates | 79 |
| cited_by_percentile_year | |
| countries_distinct_count | 1 |
| institutions_distinct_count | 8 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/9 |
| sustainable_development_goals[0].score | 0.5099999904632568 |
| sustainable_development_goals[0].display_name | Industry, innovation and infrastructure |
| citation_normalized_percentile |