Switching Independent Vector Analysis and Its Extension to Blind and Spatially Guided Convolutional Beamforming Algorithms Article Swipe
YOU?
·
· 2021
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2111.10574
This paper develops a framework that can perform denoising, dereverberation, and source separation accurately by using a relatively small number of microphones. It has been empirically confirmed that Independent Vector Analysis (IVA) can blindly separate N sources from their sound mixture even with diffuse noise when a sufficiently large number (=M) of microphones are available (i.e., M>>N). However, the estimation accuracy seriously degrades as the number of microphones, or more specifically M-N (>=0), decreases. To overcome this limitation of IVA, we propose switching IVA (swIVA) in this paper. With swIVA, time frames of an observed signal with time-varying characteristics are clustered into several groups, each of which can be well handled by IVA using a small number of microphones, and thus accurate estimation can be achieved by applying IVA individually to each of the groups. Conventionally, a switching mechanism was introduced into a beamformer; however, no blind source separation algorithms with a switching mechanism have been successfully developed until this paper. In order to incorporate dereverberation capability, this paper further extends swIVA to blind Convolutional beamforming algorithm (swCIVA). It integrates swIVA and switching Weighted Prediction Error-based dereverberation (swWPE) in a jointly optimal way. We show that both swIVA and swCIVA can be optimized effectively based on blind signal processing, and that their performance can be further improved using a spatial guide for the initialization. Experiments show that both proposed methods largely outperform conventional IVA and its Convolutional beamforming extension (CIVA) in terms of objective signal quality and automatic speech recognition scores when using a relatively small number of microphones.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2111.10574
- https://arxiv.org/pdf/2111.10574
- OA Status
- green
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4299704422
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4299704422Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2111.10574Digital Object Identifier
- Title
-
Switching Independent Vector Analysis and Its Extension to Blind and Spatially Guided Convolutional Beamforming AlgorithmsWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2021Year of publication
- Publication date
-
2021-11-20Full publication date if available
- Authors
-
Tomohiro Nakatani, Rintaro Ikeshita, Keisuke Kinoshita, Hiroshi Sawada, Naoyuki Kamo, Shoko ArakiList of authors in order
- Landing page
-
https://arxiv.org/abs/2111.10574Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2111.10574Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2111.10574Direct OA link when available
- Concepts
-
Computer science, Beamforming, Algorithm, Initialization, Blind signal separation, Speech recognition, Extension (predicate logic), SIGNAL (programming language), Reverberation, Noise (video), Pattern recognition (psychology), Artificial intelligence, Telecommunications, Engineering, Image (mathematics), Programming language, Electrical engineering, Channel (broadcasting)Top concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4299704422 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2111.10574 |
| ids.doi | https://doi.org/10.48550/arxiv.2111.10574 |
| ids.openalex | https://openalex.org/W4299704422 |
| fwci | |
| type | preprint |
| title | Switching Independent Vector Analysis and Its Extension to Blind and Spatially Guided Convolutional Beamforming Algorithms |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T11447 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9997000098228455 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1711 |
| topics[0].subfield.display_name | Signal Processing |
| topics[0].display_name | Blind Source Separation Techniques |
| topics[1].id | https://openalex.org/T10860 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9991999864578247 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1711 |
| topics[1].subfield.display_name | Signal Processing |
| topics[1].display_name | Speech and Audio Processing |
| topics[2].id | https://openalex.org/T11233 |
| topics[2].field.id | https://openalex.org/fields/22 |
| topics[2].field.display_name | Engineering |
| topics[2].score | 0.9945999979972839 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2206 |
| topics[2].subfield.display_name | Computational Mechanics |
| topics[2].display_name | Advanced Adaptive Filtering Techniques |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C41008148 |
| concepts[0].level | 0 |
| concepts[0].score | 0.7572518587112427 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[0].display_name | Computer science |
| concepts[1].id | https://openalex.org/C54197355 |
| concepts[1].level | 2 |
| concepts[1].score | 0.7343779802322388 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q5782992 |
| concepts[1].display_name | Beamforming |
| concepts[2].id | https://openalex.org/C11413529 |
| concepts[2].level | 1 |
| concepts[2].score | 0.6017992496490479 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q8366 |
| concepts[2].display_name | Algorithm |
| concepts[3].id | https://openalex.org/C114466953 |
| concepts[3].level | 2 |
| concepts[3].score | 0.5928418040275574 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q6034165 |
| concepts[3].display_name | Initialization |
| concepts[4].id | https://openalex.org/C120317606 |
| concepts[4].level | 3 |
| concepts[4].score | 0.5662909746170044 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q17105967 |
| concepts[4].display_name | Blind signal separation |
| concepts[5].id | https://openalex.org/C28490314 |
| concepts[5].level | 1 |
| concepts[5].score | 0.4838634729385376 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q189436 |
| concepts[5].display_name | Speech recognition |
| concepts[6].id | https://openalex.org/C2778029271 |
| concepts[6].level | 2 |
| concepts[6].score | 0.48098719120025635 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q5421931 |
| concepts[6].display_name | Extension (predicate logic) |
| concepts[7].id | https://openalex.org/C2779843651 |
| concepts[7].level | 2 |
| concepts[7].score | 0.454574316740036 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q7390335 |
| concepts[7].display_name | SIGNAL (programming language) |
| concepts[8].id | https://openalex.org/C95851461 |
| concepts[8].level | 2 |
| concepts[8].score | 0.4470689296722412 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q468809 |
| concepts[8].display_name | Reverberation |
| concepts[9].id | https://openalex.org/C99498987 |
| concepts[9].level | 3 |
| concepts[9].score | 0.42297637462615967 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q2210247 |
| concepts[9].display_name | Noise (video) |
| concepts[10].id | https://openalex.org/C153180895 |
| concepts[10].level | 2 |
| concepts[10].score | 0.4180656969547272 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[10].display_name | Pattern recognition (psychology) |
| concepts[11].id | https://openalex.org/C154945302 |
| concepts[11].level | 1 |
| concepts[11].score | 0.33352482318878174 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[11].display_name | Artificial intelligence |
| concepts[12].id | https://openalex.org/C76155785 |
| concepts[12].level | 1 |
| concepts[12].score | 0.08528661727905273 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q418 |
| concepts[12].display_name | Telecommunications |
| concepts[13].id | https://openalex.org/C127413603 |
| concepts[13].level | 0 |
| concepts[13].score | 0.0 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q11023 |
| concepts[13].display_name | Engineering |
| concepts[14].id | https://openalex.org/C115961682 |
| concepts[14].level | 2 |
| concepts[14].score | 0.0 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q860623 |
| concepts[14].display_name | Image (mathematics) |
| concepts[15].id | https://openalex.org/C199360897 |
| concepts[15].level | 1 |
| concepts[15].score | 0.0 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q9143 |
| concepts[15].display_name | Programming language |
| concepts[16].id | https://openalex.org/C119599485 |
| concepts[16].level | 1 |
| concepts[16].score | 0.0 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q43035 |
| concepts[16].display_name | Electrical engineering |
| concepts[17].id | https://openalex.org/C127162648 |
| concepts[17].level | 2 |
| concepts[17].score | 0.0 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q16858953 |
| concepts[17].display_name | Channel (broadcasting) |
| keywords[0].id | https://openalex.org/keywords/computer-science |
| keywords[0].score | 0.7572518587112427 |
| keywords[0].display_name | Computer science |
| keywords[1].id | https://openalex.org/keywords/beamforming |
| keywords[1].score | 0.7343779802322388 |
| keywords[1].display_name | Beamforming |
| keywords[2].id | https://openalex.org/keywords/algorithm |
| keywords[2].score | 0.6017992496490479 |
| keywords[2].display_name | Algorithm |
| keywords[3].id | https://openalex.org/keywords/initialization |
| keywords[3].score | 0.5928418040275574 |
| keywords[3].display_name | Initialization |
| keywords[4].id | https://openalex.org/keywords/blind-signal-separation |
| keywords[4].score | 0.5662909746170044 |
| keywords[4].display_name | Blind signal separation |
| keywords[5].id | https://openalex.org/keywords/speech-recognition |
| keywords[5].score | 0.4838634729385376 |
| keywords[5].display_name | Speech recognition |
| keywords[6].id | https://openalex.org/keywords/extension |
| keywords[6].score | 0.48098719120025635 |
| keywords[6].display_name | Extension (predicate logic) |
| keywords[7].id | https://openalex.org/keywords/signal |
| keywords[7].score | 0.454574316740036 |
| keywords[7].display_name | SIGNAL (programming language) |
| keywords[8].id | https://openalex.org/keywords/reverberation |
| keywords[8].score | 0.4470689296722412 |
| keywords[8].display_name | Reverberation |
| keywords[9].id | https://openalex.org/keywords/noise |
| keywords[9].score | 0.42297637462615967 |
| keywords[9].display_name | Noise (video) |
| keywords[10].id | https://openalex.org/keywords/pattern-recognition |
| keywords[10].score | 0.4180656969547272 |
| keywords[10].display_name | Pattern recognition (psychology) |
| keywords[11].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[11].score | 0.33352482318878174 |
| keywords[11].display_name | Artificial intelligence |
| keywords[12].id | https://openalex.org/keywords/telecommunications |
| keywords[12].score | 0.08528661727905273 |
| keywords[12].display_name | Telecommunications |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2111.10574 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2111.10574 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2111.10574 |
| locations[1].id | doi:10.48550/arxiv.2111.10574 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2111.10574 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5021240106 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-7487-7150 |
| authorships[0].author.display_name | Tomohiro Nakatani |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Nakatani, Tomohiro |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5084590882 |
| authorships[1].author.orcid | https://orcid.org/0000-0003-2608-1999 |
| authorships[1].author.display_name | Rintaro Ikeshita |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Ikeshita, Rintaro |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5069398831 |
| authorships[2].author.orcid | https://orcid.org/0009-0008-7987-8188 |
| authorships[2].author.display_name | Keisuke Kinoshita |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Kinoshita, Keisuke |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5007032557 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-4831-9286 |
| authorships[3].author.display_name | Hiroshi Sawada |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Sawada, Hiroshi |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5034382743 |
| authorships[4].author.orcid | |
| authorships[4].author.display_name | Naoyuki Kamo |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Kamo, Naoyuki |
| authorships[4].is_corresponding | False |
| authorships[5].author.id | https://openalex.org/A5009309584 |
| authorships[5].author.orcid | https://orcid.org/0000-0003-4363-4305 |
| authorships[5].author.display_name | Shoko Araki |
| authorships[5].author_position | last |
| authorships[5].raw_author_name | Araki, Shoko |
| authorships[5].is_corresponding | False |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2111.10574 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2022-10-02T00:00:00 |
| display_name | Switching Independent Vector Analysis and Its Extension to Blind and Spatially Guided Convolutional Beamforming Algorithms |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T11447 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9997000098228455 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1711 |
| primary_topic.subfield.display_name | Signal Processing |
| primary_topic.display_name | Blind Source Separation Techniques |
| related_works | https://openalex.org/W3204184292, https://openalex.org/W3176564347, https://openalex.org/W1985458517, https://openalex.org/W2355833770, https://openalex.org/W3031039437, https://openalex.org/W183202219, https://openalex.org/W3095877357, https://openalex.org/W2072565696, https://openalex.org/W2050451745, https://openalex.org/W2378903222 |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2111.10574 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2111.10574 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2111.10574 |
| primary_location.id | pmh:oai:arXiv.org:2111.10574 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2111.10574 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2111.10574 |
| publication_date | 2021-11-20 |
| publication_year | 2021 |
| referenced_works_count | 0 |
| abstract_inverted_index.N | 35 |
| abstract_inverted_index.a | 3, 16, 46, 114, 136, 142, 151, 189, 218, 253 |
| abstract_inverted_index.In | 161 |
| abstract_inverted_index.It | 22, 178 |
| abstract_inverted_index.To | 74 |
| abstract_inverted_index.We | 193 |
| abstract_inverted_index.an | 93 |
| abstract_inverted_index.as | 63 |
| abstract_inverted_index.be | 108, 124, 201, 214 |
| abstract_inverted_index.by | 14, 111, 126 |
| abstract_inverted_index.in | 85, 188, 240 |
| abstract_inverted_index.no | 145 |
| abstract_inverted_index.of | 20, 51, 66, 78, 92, 105, 117, 132, 242, 257 |
| abstract_inverted_index.on | 205 |
| abstract_inverted_index.or | 68 |
| abstract_inverted_index.to | 130, 163, 172 |
| abstract_inverted_index.we | 80 |
| abstract_inverted_index.IVA | 83, 112, 128, 233 |
| abstract_inverted_index.M-N | 71 |
| abstract_inverted_index.and | 10, 119, 181, 198, 209, 234, 246 |
| abstract_inverted_index.are | 53, 99 |
| abstract_inverted_index.can | 6, 32, 107, 123, 200, 213 |
| abstract_inverted_index.for | 221 |
| abstract_inverted_index.has | 23 |
| abstract_inverted_index.its | 235 |
| abstract_inverted_index.the | 58, 64, 133, 222 |
| abstract_inverted_index.was | 139 |
| abstract_inverted_index.(=M) | 50 |
| abstract_inverted_index.IVA, | 79 |
| abstract_inverted_index.This | 0 |
| abstract_inverted_index.With | 88 |
| abstract_inverted_index.been | 24, 155 |
| abstract_inverted_index.both | 196, 227 |
| abstract_inverted_index.each | 104, 131 |
| abstract_inverted_index.even | 41 |
| abstract_inverted_index.from | 37 |
| abstract_inverted_index.have | 154 |
| abstract_inverted_index.into | 101, 141 |
| abstract_inverted_index.more | 69 |
| abstract_inverted_index.show | 194, 225 |
| abstract_inverted_index.that | 5, 27, 195, 210, 226 |
| abstract_inverted_index.this | 76, 86, 159, 167 |
| abstract_inverted_index.thus | 120 |
| abstract_inverted_index.time | 90 |
| abstract_inverted_index.way. | 192 |
| abstract_inverted_index.well | 109 |
| abstract_inverted_index.when | 45, 251 |
| abstract_inverted_index.with | 42, 96, 150 |
| abstract_inverted_index.(IVA) | 31 |
| abstract_inverted_index.based | 204 |
| abstract_inverted_index.blind | 146, 173, 206 |
| abstract_inverted_index.guide | 220 |
| abstract_inverted_index.large | 48 |
| abstract_inverted_index.noise | 44 |
| abstract_inverted_index.order | 162 |
| abstract_inverted_index.paper | 1, 168 |
| abstract_inverted_index.small | 18, 115, 255 |
| abstract_inverted_index.sound | 39 |
| abstract_inverted_index.swIVA | 171, 180, 197 |
| abstract_inverted_index.terms | 241 |
| abstract_inverted_index.their | 38, 211 |
| abstract_inverted_index.until | 158 |
| abstract_inverted_index.using | 15, 113, 217, 252 |
| abstract_inverted_index.which | 106 |
| abstract_inverted_index.(CIVA) | 239 |
| abstract_inverted_index.(i.e., | 55 |
| abstract_inverted_index.Vector | 29 |
| abstract_inverted_index.frames | 91 |
| abstract_inverted_index.number | 19, 49, 65, 116, 256 |
| abstract_inverted_index.paper. | 87, 160 |
| abstract_inverted_index.scores | 250 |
| abstract_inverted_index.signal | 95, 207, 244 |
| abstract_inverted_index.source | 11, 147 |
| abstract_inverted_index.speech | 248 |
| abstract_inverted_index.swCIVA | 199 |
| abstract_inverted_index.swIVA, | 89 |
| abstract_inverted_index.(swIVA) | 84 |
| abstract_inverted_index.(swWPE) | 187 |
| abstract_inverted_index.blindly | 33 |
| abstract_inverted_index.diffuse | 43 |
| abstract_inverted_index.extends | 170 |
| abstract_inverted_index.further | 169, 215 |
| abstract_inverted_index.groups, | 103 |
| abstract_inverted_index.groups. | 134 |
| abstract_inverted_index.handled | 110 |
| abstract_inverted_index.jointly | 190 |
| abstract_inverted_index.largely | 230 |
| abstract_inverted_index.methods | 229 |
| abstract_inverted_index.mixture | 40 |
| abstract_inverted_index.optimal | 191 |
| abstract_inverted_index.perform | 7 |
| abstract_inverted_index.propose | 81 |
| abstract_inverted_index.quality | 245 |
| abstract_inverted_index.several | 102 |
| abstract_inverted_index.sources | 36 |
| abstract_inverted_index.spatial | 219 |
| abstract_inverted_index.Analysis | 30 |
| abstract_inverted_index.However, | 57 |
| abstract_inverted_index.Weighted | 183 |
| abstract_inverted_index.accuracy | 60 |
| abstract_inverted_index.accurate | 121 |
| abstract_inverted_index.achieved | 125 |
| abstract_inverted_index.applying | 127 |
| abstract_inverted_index.degrades | 62 |
| abstract_inverted_index.develops | 2 |
| abstract_inverted_index.however, | 144 |
| abstract_inverted_index.improved | 216 |
| abstract_inverted_index.observed | 94 |
| abstract_inverted_index.overcome | 75 |
| abstract_inverted_index.proposed | 228 |
| abstract_inverted_index.separate | 34 |
| abstract_inverted_index.(>=0), | 72 |
| abstract_inverted_index.(swCIVA). | 177 |
| abstract_inverted_index.algorithm | 176 |
| abstract_inverted_index.automatic | 247 |
| abstract_inverted_index.available | 54 |
| abstract_inverted_index.clustered | 100 |
| abstract_inverted_index.confirmed | 26 |
| abstract_inverted_index.developed | 157 |
| abstract_inverted_index.extension | 238 |
| abstract_inverted_index.framework | 4 |
| abstract_inverted_index.mechanism | 138, 153 |
| abstract_inverted_index.objective | 243 |
| abstract_inverted_index.optimized | 202 |
| abstract_inverted_index.seriously | 61 |
| abstract_inverted_index.switching | 82, 137, 152, 182 |
| abstract_inverted_index.Prediction | 184 |
| abstract_inverted_index.accurately | 13 |
| abstract_inverted_index.algorithms | 149 |
| abstract_inverted_index.decreases. | 73 |
| abstract_inverted_index.denoising, | 8 |
| abstract_inverted_index.estimation | 59, 122 |
| abstract_inverted_index.integrates | 179 |
| abstract_inverted_index.introduced | 140 |
| abstract_inverted_index.limitation | 77 |
| abstract_inverted_index.outperform | 231 |
| abstract_inverted_index.relatively | 17, 254 |
| abstract_inverted_index.separation | 12, 148 |
| abstract_inverted_index.Error-based | 185 |
| abstract_inverted_index.Experiments | 224 |
| abstract_inverted_index.Independent | 28 |
| abstract_inverted_index.beamformer; | 143 |
| abstract_inverted_index.beamforming | 175, 237 |
| abstract_inverted_index.capability, | 166 |
| abstract_inverted_index.effectively | 203 |
| abstract_inverted_index.empirically | 25 |
| abstract_inverted_index.incorporate | 164 |
| abstract_inverted_index.microphones | 52 |
| abstract_inverted_index.performance | 212 |
| abstract_inverted_index.processing, | 208 |
| abstract_inverted_index.recognition | 249 |
| abstract_inverted_index.M>>N). | 56 |
| abstract_inverted_index.conventional | 232 |
| abstract_inverted_index.individually | 129 |
| abstract_inverted_index.microphones, | 67, 118 |
| abstract_inverted_index.microphones. | 21, 258 |
| abstract_inverted_index.specifically | 70 |
| abstract_inverted_index.successfully | 156 |
| abstract_inverted_index.sufficiently | 47 |
| abstract_inverted_index.time-varying | 97 |
| abstract_inverted_index.Convolutional | 174, 236 |
| abstract_inverted_index.Conventionally, | 135 |
| abstract_inverted_index.characteristics | 98 |
| abstract_inverted_index.dereverberation | 165, 186 |
| abstract_inverted_index.initialization. | 223 |
| abstract_inverted_index.dereverberation, | 9 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 6 |
| citation_normalized_percentile |