Symbolic Regression with a Learned Concept Library Article Swipe
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2409.09359
We present a novel method for symbolic regression (SR), the task of searching for compact programmatic hypotheses that best explain a dataset. The problem is commonly solved using genetic algorithms; we show that we can enhance such methods by inducing a library of abstract textual concepts. Our algorithm, called LaSR, uses zero-shot queries to a large language model (LLM) to discover and evolve concepts occurring in known high-performing hypotheses. We discover new hypotheses using a mix of standard evolutionary steps and LLM-guided steps (obtained through zero-shot LLM queries) conditioned on discovered concepts. Once discovered, hypotheses are used in a new round of concept abstraction and evolution. We validate LaSR on the Feynman equations, a popular SR benchmark, as well as a set of synthetic tasks. On these benchmarks, LaSR substantially outperforms a variety of state-of-the-art SR approaches based on deep learning and evolutionary algorithms. Moreover, we show that LaSR can be used to discover a novel and powerful scaling law for LLMs.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2409.09359
- https://arxiv.org/pdf/2409.09359
- OA Status
- green
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4403667156
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4403667156Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2409.09359Digital Object Identifier
- Title
-
Symbolic Regression with a Learned Concept LibraryWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-09-14Full publication date if available
- Authors
-
Arya Grayeli, Atharva Sehgal, Omar Costilla-Reyes, Miles Cranmer, Swarat ChaudhuriList of authors in order
- Landing page
-
https://arxiv.org/abs/2409.09359Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2409.09359Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2409.09359Direct OA link when available
- Concepts
-
Computer science, Regression, The Symbolic, Regression analysis, Artificial intelligence, Psychology, Statistics, Machine learning, Mathematics, PsychoanalysisTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4403667156 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2409.09359 |
| ids.doi | https://doi.org/10.48550/arxiv.2409.09359 |
| ids.openalex | https://openalex.org/W4403667156 |
| fwci | |
| type | preprint |
| title | Symbolic Regression with a Learned Concept Library |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T11975 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9460999965667725 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1702 |
| topics[0].subfield.display_name | Artificial Intelligence |
| topics[0].display_name | Evolutionary Algorithms and Applications |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C41008148 |
| concepts[0].level | 0 |
| concepts[0].score | 0.5123528242111206 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[0].display_name | Computer science |
| concepts[1].id | https://openalex.org/C83546350 |
| concepts[1].level | 2 |
| concepts[1].score | 0.4835898280143738 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q1139051 |
| concepts[1].display_name | Regression |
| concepts[2].id | https://openalex.org/C2776095079 |
| concepts[2].level | 2 |
| concepts[2].score | 0.4383007884025574 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q489538 |
| concepts[2].display_name | The Symbolic |
| concepts[3].id | https://openalex.org/C152877465 |
| concepts[3].level | 2 |
| concepts[3].score | 0.4114496111869812 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q208042 |
| concepts[3].display_name | Regression analysis |
| concepts[4].id | https://openalex.org/C154945302 |
| concepts[4].level | 1 |
| concepts[4].score | 0.3420203924179077 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[4].display_name | Artificial intelligence |
| concepts[5].id | https://openalex.org/C15744967 |
| concepts[5].level | 0 |
| concepts[5].score | 0.30282318592071533 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q9418 |
| concepts[5].display_name | Psychology |
| concepts[6].id | https://openalex.org/C105795698 |
| concepts[6].level | 1 |
| concepts[6].score | 0.24768415093421936 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q12483 |
| concepts[6].display_name | Statistics |
| concepts[7].id | https://openalex.org/C119857082 |
| concepts[7].level | 1 |
| concepts[7].score | 0.21338728070259094 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[7].display_name | Machine learning |
| concepts[8].id | https://openalex.org/C33923547 |
| concepts[8].level | 0 |
| concepts[8].score | 0.20705321431159973 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[8].display_name | Mathematics |
| concepts[9].id | https://openalex.org/C11171543 |
| concepts[9].level | 1 |
| concepts[9].score | 0.0 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q41630 |
| concepts[9].display_name | Psychoanalysis |
| keywords[0].id | https://openalex.org/keywords/computer-science |
| keywords[0].score | 0.5123528242111206 |
| keywords[0].display_name | Computer science |
| keywords[1].id | https://openalex.org/keywords/regression |
| keywords[1].score | 0.4835898280143738 |
| keywords[1].display_name | Regression |
| keywords[2].id | https://openalex.org/keywords/the-symbolic |
| keywords[2].score | 0.4383007884025574 |
| keywords[2].display_name | The Symbolic |
| keywords[3].id | https://openalex.org/keywords/regression-analysis |
| keywords[3].score | 0.4114496111869812 |
| keywords[3].display_name | Regression analysis |
| keywords[4].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[4].score | 0.3420203924179077 |
| keywords[4].display_name | Artificial intelligence |
| keywords[5].id | https://openalex.org/keywords/psychology |
| keywords[5].score | 0.30282318592071533 |
| keywords[5].display_name | Psychology |
| keywords[6].id | https://openalex.org/keywords/statistics |
| keywords[6].score | 0.24768415093421936 |
| keywords[6].display_name | Statistics |
| keywords[7].id | https://openalex.org/keywords/machine-learning |
| keywords[7].score | 0.21338728070259094 |
| keywords[7].display_name | Machine learning |
| keywords[8].id | https://openalex.org/keywords/mathematics |
| keywords[8].score | 0.20705321431159973 |
| keywords[8].display_name | Mathematics |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2409.09359 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2409.09359 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2409.09359 |
| locations[1].id | doi:10.48550/arxiv.2409.09359 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | cc-by |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | https://openalex.org/licenses/cc-by |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2409.09359 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5093104458 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Arya Grayeli |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Grayeli, Arya |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5015124445 |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | Atharva Sehgal |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Sehgal, Atharva |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5007500193 |
| authorships[2].author.orcid | https://orcid.org/0000-0001-8331-7262 |
| authorships[2].author.display_name | Omar Costilla-Reyes |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Costilla-Reyes, Omar |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5078731429 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-6458-3423 |
| authorships[3].author.display_name | Miles Cranmer |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Cranmer, Miles |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5057341982 |
| authorships[4].author.orcid | https://orcid.org/0000-0002-6859-1391 |
| authorships[4].author.display_name | Swarat Chaudhuri |
| authorships[4].author_position | last |
| authorships[4].raw_author_name | Chaudhuri, Swarat |
| authorships[4].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2409.09359 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Symbolic Regression with a Learned Concept Library |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T11975 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9460999965667725 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1702 |
| primary_topic.subfield.display_name | Artificial Intelligence |
| primary_topic.display_name | Evolutionary Algorithms and Applications |
| related_works | https://openalex.org/W31220157, https://openalex.org/W2312753042, https://openalex.org/W4289356671, https://openalex.org/W2389155397, https://openalex.org/W2165884543, https://openalex.org/W3186837933, https://openalex.org/W2368989808, https://openalex.org/W1969346022, https://openalex.org/W2034959125, https://openalex.org/W2355687852 |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2409.09359 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2409.09359 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2409.09359 |
| primary_location.id | pmh:oai:arXiv.org:2409.09359 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2409.09359 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2409.09359 |
| publication_date | 2024-09-14 |
| publication_year | 2024 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 2, 20, 40, 54, 74, 98, 113, 120, 131, 154 |
| abstract_inverted_index.On | 125 |
| abstract_inverted_index.SR | 115, 135 |
| abstract_inverted_index.We | 0, 69, 106 |
| abstract_inverted_index.as | 117, 119 |
| abstract_inverted_index.be | 150 |
| abstract_inverted_index.by | 38 |
| abstract_inverted_index.in | 65, 97 |
| abstract_inverted_index.is | 24 |
| abstract_inverted_index.of | 11, 42, 76, 101, 122, 133 |
| abstract_inverted_index.on | 89, 109, 138 |
| abstract_inverted_index.to | 53, 59, 152 |
| abstract_inverted_index.we | 30, 33, 145 |
| abstract_inverted_index.LLM | 86 |
| abstract_inverted_index.Our | 46 |
| abstract_inverted_index.The | 22 |
| abstract_inverted_index.and | 61, 80, 104, 141, 156 |
| abstract_inverted_index.are | 95 |
| abstract_inverted_index.can | 34, 149 |
| abstract_inverted_index.for | 5, 13, 160 |
| abstract_inverted_index.law | 159 |
| abstract_inverted_index.mix | 75 |
| abstract_inverted_index.new | 71, 99 |
| abstract_inverted_index.set | 121 |
| abstract_inverted_index.the | 9, 110 |
| abstract_inverted_index.LaSR | 108, 128, 148 |
| abstract_inverted_index.Once | 92 |
| abstract_inverted_index.best | 18 |
| abstract_inverted_index.deep | 139 |
| abstract_inverted_index.show | 31, 146 |
| abstract_inverted_index.such | 36 |
| abstract_inverted_index.task | 10 |
| abstract_inverted_index.that | 17, 32, 147 |
| abstract_inverted_index.used | 96, 151 |
| abstract_inverted_index.uses | 50 |
| abstract_inverted_index.well | 118 |
| abstract_inverted_index.(LLM) | 58 |
| abstract_inverted_index.(SR), | 8 |
| abstract_inverted_index.LLMs. | 161 |
| abstract_inverted_index.LaSR, | 49 |
| abstract_inverted_index.based | 137 |
| abstract_inverted_index.known | 66 |
| abstract_inverted_index.large | 55 |
| abstract_inverted_index.model | 57 |
| abstract_inverted_index.novel | 3, 155 |
| abstract_inverted_index.round | 100 |
| abstract_inverted_index.steps | 79, 82 |
| abstract_inverted_index.these | 126 |
| abstract_inverted_index.using | 27, 73 |
| abstract_inverted_index.called | 48 |
| abstract_inverted_index.evolve | 62 |
| abstract_inverted_index.method | 4 |
| abstract_inverted_index.solved | 26 |
| abstract_inverted_index.tasks. | 124 |
| abstract_inverted_index.Feynman | 111 |
| abstract_inverted_index.compact | 14 |
| abstract_inverted_index.concept | 102 |
| abstract_inverted_index.enhance | 35 |
| abstract_inverted_index.explain | 19 |
| abstract_inverted_index.genetic | 28 |
| abstract_inverted_index.library | 41 |
| abstract_inverted_index.methods | 37 |
| abstract_inverted_index.popular | 114 |
| abstract_inverted_index.present | 1 |
| abstract_inverted_index.problem | 23 |
| abstract_inverted_index.queries | 52 |
| abstract_inverted_index.scaling | 158 |
| abstract_inverted_index.textual | 44 |
| abstract_inverted_index.through | 84 |
| abstract_inverted_index.variety | 132 |
| abstract_inverted_index.abstract | 43 |
| abstract_inverted_index.commonly | 25 |
| abstract_inverted_index.concepts | 63 |
| abstract_inverted_index.dataset. | 21 |
| abstract_inverted_index.discover | 60, 70, 153 |
| abstract_inverted_index.inducing | 39 |
| abstract_inverted_index.language | 56 |
| abstract_inverted_index.learning | 140 |
| abstract_inverted_index.powerful | 157 |
| abstract_inverted_index.queries) | 87 |
| abstract_inverted_index.standard | 77 |
| abstract_inverted_index.symbolic | 6 |
| abstract_inverted_index.validate | 107 |
| abstract_inverted_index.(obtained | 83 |
| abstract_inverted_index.Moreover, | 144 |
| abstract_inverted_index.concepts. | 45, 91 |
| abstract_inverted_index.occurring | 64 |
| abstract_inverted_index.searching | 12 |
| abstract_inverted_index.synthetic | 123 |
| abstract_inverted_index.zero-shot | 51, 85 |
| abstract_inverted_index.LLM-guided | 81 |
| abstract_inverted_index.algorithm, | 47 |
| abstract_inverted_index.approaches | 136 |
| abstract_inverted_index.benchmark, | 116 |
| abstract_inverted_index.discovered | 90 |
| abstract_inverted_index.equations, | 112 |
| abstract_inverted_index.evolution. | 105 |
| abstract_inverted_index.hypotheses | 16, 72, 94 |
| abstract_inverted_index.regression | 7 |
| abstract_inverted_index.abstraction | 103 |
| abstract_inverted_index.algorithms. | 143 |
| abstract_inverted_index.algorithms; | 29 |
| abstract_inverted_index.benchmarks, | 127 |
| abstract_inverted_index.conditioned | 88 |
| abstract_inverted_index.discovered, | 93 |
| abstract_inverted_index.hypotheses. | 68 |
| abstract_inverted_index.outperforms | 130 |
| abstract_inverted_index.evolutionary | 78, 142 |
| abstract_inverted_index.programmatic | 15 |
| abstract_inverted_index.substantially | 129 |
| abstract_inverted_index.high-performing | 67 |
| abstract_inverted_index.state-of-the-art | 134 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 5 |
| citation_normalized_percentile |