SyncPixel: A Computer Vision Framework for Automated Emotion-Based Music Suggestions Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.5281/zenodo.17832363
In the age of social media, visual content plays a dominant role in digital self-expression. However, selecting the right accompanying music to match the emotional tone of an image remains a time-consuming and subjective process for users. This paper presents an intelligent system that automates this task by analyzing images to generate emotion-based song recommendations. The proposed framework leverages computer vision techniques to extract visual and contextual cues such as facial expressions, background scenery, lighting conditions, and color tone. These features are then mapped to emotional states using deep learning models, forming the basis for music recommendation through emotion–music correlation analysis. By integrating APIs such as Spotify or YouTube Music, the system curates song lists that align with the detected emotion, enhancing user experience and reducing decision fatigue. Experimental results demonstrate that the model effectively bridges visual emotion recognition and audio recommendation, offering a novel, AI-driven solution for personalized multimedia pairing in social media applications. Keywords Image Emotion Recognition, Computer Vision, Facial Expression Analysis, Deep Learning, Emotion Detection, Music Recommendation System, Affective Computing, Spotify API, Scene Analysis, Artificial Intelligence, Multimodal Emotion Recognition.
Related Topics
- Type
- article
- Landing Page
- https://doi.org/10.5281/zenodo.17832363
- OA Status
- green
- OpenAlex ID
- https://openalex.org/W7109137777
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W7109137777Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.5281/zenodo.17832363Digital Object Identifier
- Title
-
SyncPixel: A Computer Vision Framework for Automated Emotion-Based Music SuggestionsWork title
- Type
-
articleOpenAlex work type
- Publication year
-
2025Year of publication
- Publication date
-
2025-11-19Full publication date if available
- Authors
-
Aman, Sanskar Gaherwal, Sarthak Sharma, Dhruv Goyal, Divy RajList of authors in order
- Landing page
-
https://doi.org/10.5281/zenodo.17832363Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.5281/zenodo.17832363Direct OA link when available
- Concepts
-
Computer science, Process (computing), Task (project management), Facial expression, Emotion recognition, Human–computer interaction, Artificial intelligence, Multimedia, Deep learning, Affective computing, Emotion detection, Face (sociological concept), Image editing, Tone (literature), Facial recognition system, Emotion classification, Computer vision, Task analysis, Emotional expression, Recommender system, Speech recognition, Image (mathematics)Top concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
Full payload
| id | https://openalex.org/W7109137777 |
|---|---|
| doi | https://doi.org/10.5281/zenodo.17832363 |
| ids.doi | https://doi.org/10.5281/zenodo.17832363 |
| ids.openalex | https://openalex.org/W7109137777 |
| fwci | 0.0 |
| type | article |
| title | SyncPixel: A Computer Vision Framework for Automated Emotion-Based Music Suggestions |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T11309 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.5374202728271484 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1711 |
| topics[0].subfield.display_name | Signal Processing |
| topics[0].display_name | Music and Audio Processing |
| topics[1].id | https://openalex.org/T10667 |
| topics[1].field.id | https://openalex.org/fields/32 |
| topics[1].field.display_name | Psychology |
| topics[1].score | 0.3056882321834564 |
| topics[1].domain.id | https://openalex.org/domains/2 |
| topics[1].domain.display_name | Social Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/3205 |
| topics[1].subfield.display_name | Experimental and Cognitive Psychology |
| topics[1].display_name | Emotion and Mood Recognition |
| topics[2].id | https://openalex.org/T10788 |
| topics[2].field.id | https://openalex.org/fields/28 |
| topics[2].field.display_name | Neuroscience |
| topics[2].score | 0.013161228969693184 |
| topics[2].domain.id | https://openalex.org/domains/1 |
| topics[2].domain.display_name | Life Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2805 |
| topics[2].subfield.display_name | Cognitive Neuroscience |
| topics[2].display_name | Neuroscience and Music Perception |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C41008148 |
| concepts[0].level | 0 |
| concepts[0].score | 0.7362778782844543 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[0].display_name | Computer science |
| concepts[1].id | https://openalex.org/C98045186 |
| concepts[1].level | 2 |
| concepts[1].score | 0.5485585331916809 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q205663 |
| concepts[1].display_name | Process (computing) |
| concepts[2].id | https://openalex.org/C2780451532 |
| concepts[2].level | 2 |
| concepts[2].score | 0.541941225528717 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q759676 |
| concepts[2].display_name | Task (project management) |
| concepts[3].id | https://openalex.org/C195704467 |
| concepts[3].level | 2 |
| concepts[3].score | 0.505029559135437 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q327968 |
| concepts[3].display_name | Facial expression |
| concepts[4].id | https://openalex.org/C2777438025 |
| concepts[4].level | 2 |
| concepts[4].score | 0.46962302923202515 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q1339090 |
| concepts[4].display_name | Emotion recognition |
| concepts[5].id | https://openalex.org/C107457646 |
| concepts[5].level | 1 |
| concepts[5].score | 0.45610252022743225 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q207434 |
| concepts[5].display_name | Human–computer interaction |
| concepts[6].id | https://openalex.org/C154945302 |
| concepts[6].level | 1 |
| concepts[6].score | 0.44472575187683105 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[6].display_name | Artificial intelligence |
| concepts[7].id | https://openalex.org/C49774154 |
| concepts[7].level | 1 |
| concepts[7].score | 0.4429069459438324 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q131765 |
| concepts[7].display_name | Multimedia |
| concepts[8].id | https://openalex.org/C108583219 |
| concepts[8].level | 2 |
| concepts[8].score | 0.40984946489334106 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q197536 |
| concepts[8].display_name | Deep learning |
| concepts[9].id | https://openalex.org/C6438553 |
| concepts[9].level | 2 |
| concepts[9].score | 0.408425509929657 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q1185804 |
| concepts[9].display_name | Affective computing |
| concepts[10].id | https://openalex.org/C2988148770 |
| concepts[10].level | 3 |
| concepts[10].score | 0.3736085593700409 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q1339090 |
| concepts[10].display_name | Emotion detection |
| concepts[11].id | https://openalex.org/C2779304628 |
| concepts[11].level | 2 |
| concepts[11].score | 0.3588224947452545 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q3503480 |
| concepts[11].display_name | Face (sociological concept) |
| concepts[12].id | https://openalex.org/C2776674983 |
| concepts[12].level | 3 |
| concepts[12].score | 0.3369967043399811 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q545981 |
| concepts[12].display_name | Image editing |
| concepts[13].id | https://openalex.org/C2780583480 |
| concepts[13].level | 2 |
| concepts[13].score | 0.3334016501903534 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q1366327 |
| concepts[13].display_name | Tone (literature) |
| concepts[14].id | https://openalex.org/C31510193 |
| concepts[14].level | 3 |
| concepts[14].score | 0.31163254380226135 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q1192553 |
| concepts[14].display_name | Facial recognition system |
| concepts[15].id | https://openalex.org/C206310091 |
| concepts[15].level | 2 |
| concepts[15].score | 0.3068847954273224 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q750859 |
| concepts[15].display_name | Emotion classification |
| concepts[16].id | https://openalex.org/C31972630 |
| concepts[16].level | 1 |
| concepts[16].score | 0.297348290681839 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q844240 |
| concepts[16].display_name | Computer vision |
| concepts[17].id | https://openalex.org/C175154964 |
| concepts[17].level | 3 |
| concepts[17].score | 0.29628726840019226 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q380077 |
| concepts[17].display_name | Task analysis |
| concepts[18].id | https://openalex.org/C143110190 |
| concepts[18].level | 2 |
| concepts[18].score | 0.2886951267719269 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q5373787 |
| concepts[18].display_name | Emotional expression |
| concepts[19].id | https://openalex.org/C557471498 |
| concepts[19].level | 2 |
| concepts[19].score | 0.27937424182891846 |
| concepts[19].wikidata | https://www.wikidata.org/wiki/Q554950 |
| concepts[19].display_name | Recommender system |
| concepts[20].id | https://openalex.org/C28490314 |
| concepts[20].level | 1 |
| concepts[20].score | 0.2675989866256714 |
| concepts[20].wikidata | https://www.wikidata.org/wiki/Q189436 |
| concepts[20].display_name | Speech recognition |
| concepts[21].id | https://openalex.org/C115961682 |
| concepts[21].level | 2 |
| concepts[21].score | 0.2565336525440216 |
| concepts[21].wikidata | https://www.wikidata.org/wiki/Q860623 |
| concepts[21].display_name | Image (mathematics) |
| keywords[0].id | https://openalex.org/keywords/process |
| keywords[0].score | 0.5485585331916809 |
| keywords[0].display_name | Process (computing) |
| keywords[1].id | https://openalex.org/keywords/task |
| keywords[1].score | 0.541941225528717 |
| keywords[1].display_name | Task (project management) |
| keywords[2].id | https://openalex.org/keywords/facial-expression |
| keywords[2].score | 0.505029559135437 |
| keywords[2].display_name | Facial expression |
| keywords[3].id | https://openalex.org/keywords/emotion-recognition |
| keywords[3].score | 0.46962302923202515 |
| keywords[3].display_name | Emotion recognition |
| keywords[4].id | https://openalex.org/keywords/deep-learning |
| keywords[4].score | 0.40984946489334106 |
| keywords[4].display_name | Deep learning |
| keywords[5].id | https://openalex.org/keywords/affective-computing |
| keywords[5].score | 0.408425509929657 |
| keywords[5].display_name | Affective computing |
| keywords[6].id | https://openalex.org/keywords/emotion-detection |
| keywords[6].score | 0.3736085593700409 |
| keywords[6].display_name | Emotion detection |
| keywords[7].id | https://openalex.org/keywords/face |
| keywords[7].score | 0.3588224947452545 |
| keywords[7].display_name | Face (sociological concept) |
| language | |
| locations[0].id | doi:10.5281/zenodo.17832363 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400562 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | Zenodo (CERN European Organization for Nuclear Research) |
| locations[0].source.host_organization | https://openalex.org/I67311998 |
| locations[0].source.host_organization_name | European Organization for Nuclear Research |
| locations[0].source.host_organization_lineage | https://openalex.org/I67311998 |
| locations[0].license | cc-by |
| locations[0].pdf_url | |
| locations[0].version | |
| locations[0].raw_type | article-journal |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | False |
| locations[0].is_published | |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | https://doi.org/10.5281/zenodo.17832363 |
| indexed_in | datacite |
| authorships[0].author.id | |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Aman, Sanskar Gaherwal, Sarthak Sharma, Dhruv Goyal, Divy Raj |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Aman, Sanskar Gaherwal, Sarthak Sharma, Dhruv Goyal, Divy Raj |
| authorships[0].is_corresponding | True |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.5281/zenodo.17832363 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-12-06T00:00:00 |
| display_name | SyncPixel: A Computer Vision Framework for Automated Emotion-Based Music Suggestions |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-12-06T23:14:57.273132 |
| primary_topic.id | https://openalex.org/T11309 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.5374202728271484 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1711 |
| primary_topic.subfield.display_name | Signal Processing |
| primary_topic.display_name | Music and Audio Processing |
| cited_by_count | 0 |
| locations_count | 1 |
| best_oa_location.id | doi:10.5281/zenodo.17832363 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400562 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | Zenodo (CERN European Organization for Nuclear Research) |
| best_oa_location.source.host_organization | https://openalex.org/I67311998 |
| best_oa_location.source.host_organization_name | European Organization for Nuclear Research |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I67311998 |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | |
| best_oa_location.version | |
| best_oa_location.raw_type | article-journal |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | https://doi.org/10.5281/zenodo.17832363 |
| primary_location.id | doi:10.5281/zenodo.17832363 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400562 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | Zenodo (CERN European Organization for Nuclear Research) |
| primary_location.source.host_organization | https://openalex.org/I67311998 |
| primary_location.source.host_organization_name | European Organization for Nuclear Research |
| primary_location.source.host_organization_lineage | https://openalex.org/I67311998 |
| primary_location.license | cc-by |
| primary_location.pdf_url | |
| primary_location.version | |
| primary_location.raw_type | article-journal |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | https://doi.org/10.5281/zenodo.17832363 |
| publication_date | 2025-11-19 |
| publication_year | 2025 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 10, 31, 144 |
| abstract_inverted_index.By | 102 |
| abstract_inverted_index.In | 1 |
| abstract_inverted_index.an | 28, 41 |
| abstract_inverted_index.as | 70, 106 |
| abstract_inverted_index.by | 48 |
| abstract_inverted_index.in | 13, 152 |
| abstract_inverted_index.of | 4, 27 |
| abstract_inverted_index.or | 108 |
| abstract_inverted_index.to | 22, 51, 63, 85 |
| abstract_inverted_index.The | 56 |
| abstract_inverted_index.age | 3 |
| abstract_inverted_index.and | 33, 66, 77, 125, 140 |
| abstract_inverted_index.are | 82 |
| abstract_inverted_index.for | 36, 95, 148 |
| abstract_inverted_index.the | 2, 18, 24, 93, 111, 119, 133 |
| abstract_inverted_index.API, | 175 |
| abstract_inverted_index.APIs | 104 |
| abstract_inverted_index.Deep | 165 |
| abstract_inverted_index.This | 38 |
| abstract_inverted_index.cues | 68 |
| abstract_inverted_index.deep | 89 |
| abstract_inverted_index.role | 12 |
| abstract_inverted_index.song | 54, 114 |
| abstract_inverted_index.such | 69, 105 |
| abstract_inverted_index.task | 47 |
| abstract_inverted_index.that | 44, 116, 132 |
| abstract_inverted_index.then | 83 |
| abstract_inverted_index.this | 46 |
| abstract_inverted_index.tone | 26 |
| abstract_inverted_index.user | 123 |
| abstract_inverted_index.with | 118 |
| abstract_inverted_index.Image | 157 |
| abstract_inverted_index.Music | 169 |
| abstract_inverted_index.Scene | 176 |
| abstract_inverted_index.These | 80 |
| abstract_inverted_index.align | 117 |
| abstract_inverted_index.audio | 141 |
| abstract_inverted_index.basis | 94 |
| abstract_inverted_index.color | 78 |
| abstract_inverted_index.image | 29 |
| abstract_inverted_index.lists | 115 |
| abstract_inverted_index.match | 23 |
| abstract_inverted_index.media | 154 |
| abstract_inverted_index.model | 134 |
| abstract_inverted_index.music | 21, 96 |
| abstract_inverted_index.paper | 39 |
| abstract_inverted_index.plays | 9 |
| abstract_inverted_index.right | 19 |
| abstract_inverted_index.tone. | 79 |
| abstract_inverted_index.using | 88 |
| abstract_inverted_index.Facial | 162 |
| abstract_inverted_index.Music, | 110 |
| abstract_inverted_index.facial | 71 |
| abstract_inverted_index.images | 50 |
| abstract_inverted_index.mapped | 84 |
| abstract_inverted_index.media, | 6 |
| abstract_inverted_index.novel, | 145 |
| abstract_inverted_index.social | 5, 153 |
| abstract_inverted_index.states | 87 |
| abstract_inverted_index.system | 43, 112 |
| abstract_inverted_index.users. | 37 |
| abstract_inverted_index.vision | 61 |
| abstract_inverted_index.visual | 7, 65, 137 |
| abstract_inverted_index.Emotion | 158, 167, 181 |
| abstract_inverted_index.Spotify | 107, 174 |
| abstract_inverted_index.System, | 171 |
| abstract_inverted_index.Vision, | 161 |
| abstract_inverted_index.YouTube | 109 |
| abstract_inverted_index.bridges | 136 |
| abstract_inverted_index.content | 8 |
| abstract_inverted_index.curates | 113 |
| abstract_inverted_index.digital | 14 |
| abstract_inverted_index.emotion | 138 |
| abstract_inverted_index.extract | 64 |
| abstract_inverted_index.forming | 92 |
| abstract_inverted_index.models, | 91 |
| abstract_inverted_index.pairing | 151 |
| abstract_inverted_index.process | 35 |
| abstract_inverted_index.remains | 30 |
| abstract_inverted_index.results | 130 |
| abstract_inverted_index.through | 98 |
| abstract_inverted_index.Abstract | 0 |
| abstract_inverted_index.Computer | 160 |
| abstract_inverted_index.However, | 16 |
| abstract_inverted_index.Keywords | 156 |
| abstract_inverted_index.computer | 60 |
| abstract_inverted_index.decision | 127 |
| abstract_inverted_index.detected | 120 |
| abstract_inverted_index.dominant | 11 |
| abstract_inverted_index.emotion, | 121 |
| abstract_inverted_index.fatigue. | 128 |
| abstract_inverted_index.features | 81 |
| abstract_inverted_index.generate | 52 |
| abstract_inverted_index.learning | 90 |
| abstract_inverted_index.lighting | 75 |
| abstract_inverted_index.offering | 143 |
| abstract_inverted_index.presents | 40 |
| abstract_inverted_index.proposed | 57 |
| abstract_inverted_index.reducing | 126 |
| abstract_inverted_index.scenery, | 74 |
| abstract_inverted_index.solution | 147 |
| abstract_inverted_index.AI-driven | 146 |
| abstract_inverted_index.Affective | 172 |
| abstract_inverted_index.Analysis, | 164, 177 |
| abstract_inverted_index.Learning, | 166 |
| abstract_inverted_index.analysis. | 101 |
| abstract_inverted_index.analyzing | 49 |
| abstract_inverted_index.automates | 45 |
| abstract_inverted_index.emotional | 25, 86 |
| abstract_inverted_index.enhancing | 122 |
| abstract_inverted_index.framework | 58 |
| abstract_inverted_index.leverages | 59 |
| abstract_inverted_index.selecting | 17 |
| abstract_inverted_index.Artificial | 178 |
| abstract_inverted_index.Computing, | 173 |
| abstract_inverted_index.Detection, | 168 |
| abstract_inverted_index.Expression | 163 |
| abstract_inverted_index.Multimodal | 180 |
| abstract_inverted_index.background | 73 |
| abstract_inverted_index.contextual | 67 |
| abstract_inverted_index.experience | 124 |
| abstract_inverted_index.multimedia | 150 |
| abstract_inverted_index.subjective | 34 |
| abstract_inverted_index.techniques | 62 |
| abstract_inverted_index.conditions, | 76 |
| abstract_inverted_index.correlation | 100 |
| abstract_inverted_index.demonstrate | 131 |
| abstract_inverted_index.effectively | 135 |
| abstract_inverted_index.integrating | 103 |
| abstract_inverted_index.intelligent | 42 |
| abstract_inverted_index.recognition | 139 |
| abstract_inverted_index.Experimental | 129 |
| abstract_inverted_index.Recognition, | 159 |
| abstract_inverted_index.Recognition. | 182 |
| abstract_inverted_index.accompanying | 20 |
| abstract_inverted_index.expressions, | 72 |
| abstract_inverted_index.personalized | 149 |
| abstract_inverted_index.Intelligence, | 179 |
| abstract_inverted_index.applications. | 155 |
| abstract_inverted_index.emotion-based | 53 |
| abstract_inverted_index.Recommendation | 170 |
| abstract_inverted_index.recommendation | 97 |
| abstract_inverted_index.time-consuming | 32 |
| abstract_inverted_index.emotion–music | 99 |
| abstract_inverted_index.recommendation, | 142 |
| abstract_inverted_index.recommendations. | 55 |
| abstract_inverted_index.self-expression. | 15 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 1 |
| citation_normalized_percentile.value | 0.81803101 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |