Synergizing Generative AI and Machine Learning for Financial Credit Risk Forecasting and Code Auditing Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.32628/cseit25112761
Financial stability and efficiency of costs and time require the credit risk assessment process to evaluate models and comparisons while assessing future business impacts on the commercial banking sector. Accurate credit risk evaluation remains fundamental because financial institutions need it to prevent defaults while developing superior lending methods. A new AI framework based on Generative AI coupled with BERT technology presents itself for financial credit risk forecasting tasks. The model advances data representation by producing synthetic information and improves generalization through expert feature choice mechanisms while delivering fairness through automatic code evaluation systems. The Bank Credit Card dataset evaluation shows BERT surpasses conventional models to deliver 99.31% accuracy together with 99.61% precision 99.76% recall and 99.87% F1-score. BERT produces superior classification results than SVM and Decision Tree in addition to Logistic Regression as verified through comparative analysis. In order to better adapt to changing financial market conditions, future research will focus on creating hybrid models and real-time credit risk monitoring. The study's findings support the application of deep learning in financial risk management.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.32628/cseit25112761
- https://www.ijsrcseit.com/index.php/home/article/download/CSEIT25112761/CSEIT25112761
- OA Status
- diamond
- Cited By
- 2
- References
- 15
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4409107186
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4409107186Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.32628/cseit25112761Digital Object Identifier
- Title
-
Synergizing Generative AI and Machine Learning for Financial Credit Risk Forecasting and Code AuditingWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-04-01Full publication date if available
- Authors
-
Bhushan P. Chaudhari, Santhosh Chitraju Gopal VermaList of authors in order
- Landing page
-
https://doi.org/10.32628/cseit25112761Publisher landing page
- PDF URL
-
https://www.ijsrcseit.com/index.php/home/article/download/CSEIT25112761/CSEIT25112761Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
diamondOpen access status per OpenAlex
- OA URL
-
https://www.ijsrcseit.com/index.php/home/article/download/CSEIT25112761/CSEIT25112761Direct OA link when available
- Concepts
-
Audit, Code (set theory), Business, Generative grammar, Computer science, Artificial intelligence, Machine learning, Finance, Accounting, Programming language, Set (abstract data type)Top concepts (fields/topics) attached by OpenAlex
- Cited by
-
2Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 2Per-year citation counts (last 5 years)
- References (count)
-
15Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4409107186 |
|---|---|
| doi | https://doi.org/10.32628/cseit25112761 |
| ids.doi | https://doi.org/10.32628/cseit25112761 |
| ids.openalex | https://openalex.org/W4409107186 |
| fwci | 16.96769478 |
| type | article |
| title | Synergizing Generative AI and Machine Learning for Financial Credit Risk Forecasting and Code Auditing |
| biblio.issue | 2 |
| biblio.volume | 11 |
| biblio.last_page | 2893 |
| biblio.first_page | 2882 |
| topics[0].id | https://openalex.org/T11653 |
| topics[0].field.id | https://openalex.org/fields/14 |
| topics[0].field.display_name | Business, Management and Accounting |
| topics[0].score | 0.9598000049591064 |
| topics[0].domain.id | https://openalex.org/domains/2 |
| topics[0].domain.display_name | Social Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1402 |
| topics[0].subfield.display_name | Accounting |
| topics[0].display_name | Financial Distress and Bankruptcy Prediction |
| topics[1].id | https://openalex.org/T11326 |
| topics[1].field.id | https://openalex.org/fields/18 |
| topics[1].field.display_name | Decision Sciences |
| topics[1].score | 0.920199990272522 |
| topics[1].domain.id | https://openalex.org/domains/2 |
| topics[1].domain.display_name | Social Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1803 |
| topics[1].subfield.display_name | Management Science and Operations Research |
| topics[1].display_name | Stock Market Forecasting Methods |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C199521495 |
| concepts[0].level | 2 |
| concepts[0].score | 0.6410614252090454 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q181487 |
| concepts[0].display_name | Audit |
| concepts[1].id | https://openalex.org/C2776760102 |
| concepts[1].level | 3 |
| concepts[1].score | 0.5802226662635803 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q5139990 |
| concepts[1].display_name | Code (set theory) |
| concepts[2].id | https://openalex.org/C144133560 |
| concepts[2].level | 0 |
| concepts[2].score | 0.44036421179771423 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q4830453 |
| concepts[2].display_name | Business |
| concepts[3].id | https://openalex.org/C39890363 |
| concepts[3].level | 2 |
| concepts[3].score | 0.4291996955871582 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q36108 |
| concepts[3].display_name | Generative grammar |
| concepts[4].id | https://openalex.org/C41008148 |
| concepts[4].level | 0 |
| concepts[4].score | 0.4166322946548462 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[4].display_name | Computer science |
| concepts[5].id | https://openalex.org/C154945302 |
| concepts[5].level | 1 |
| concepts[5].score | 0.41309860348701477 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[5].display_name | Artificial intelligence |
| concepts[6].id | https://openalex.org/C119857082 |
| concepts[6].level | 1 |
| concepts[6].score | 0.39807644486427307 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[6].display_name | Machine learning |
| concepts[7].id | https://openalex.org/C10138342 |
| concepts[7].level | 1 |
| concepts[7].score | 0.35235345363616943 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q43015 |
| concepts[7].display_name | Finance |
| concepts[8].id | https://openalex.org/C121955636 |
| concepts[8].level | 1 |
| concepts[8].score | 0.29592806100845337 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q4116214 |
| concepts[8].display_name | Accounting |
| concepts[9].id | https://openalex.org/C199360897 |
| concepts[9].level | 1 |
| concepts[9].score | 0.12612470984458923 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q9143 |
| concepts[9].display_name | Programming language |
| concepts[10].id | https://openalex.org/C177264268 |
| concepts[10].level | 2 |
| concepts[10].score | 0.0 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q1514741 |
| concepts[10].display_name | Set (abstract data type) |
| keywords[0].id | https://openalex.org/keywords/audit |
| keywords[0].score | 0.6410614252090454 |
| keywords[0].display_name | Audit |
| keywords[1].id | https://openalex.org/keywords/code |
| keywords[1].score | 0.5802226662635803 |
| keywords[1].display_name | Code (set theory) |
| keywords[2].id | https://openalex.org/keywords/business |
| keywords[2].score | 0.44036421179771423 |
| keywords[2].display_name | Business |
| keywords[3].id | https://openalex.org/keywords/generative-grammar |
| keywords[3].score | 0.4291996955871582 |
| keywords[3].display_name | Generative grammar |
| keywords[4].id | https://openalex.org/keywords/computer-science |
| keywords[4].score | 0.4166322946548462 |
| keywords[4].display_name | Computer science |
| keywords[5].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[5].score | 0.41309860348701477 |
| keywords[5].display_name | Artificial intelligence |
| keywords[6].id | https://openalex.org/keywords/machine-learning |
| keywords[6].score | 0.39807644486427307 |
| keywords[6].display_name | Machine learning |
| keywords[7].id | https://openalex.org/keywords/finance |
| keywords[7].score | 0.35235345363616943 |
| keywords[7].display_name | Finance |
| keywords[8].id | https://openalex.org/keywords/accounting |
| keywords[8].score | 0.29592806100845337 |
| keywords[8].display_name | Accounting |
| keywords[9].id | https://openalex.org/keywords/programming-language |
| keywords[9].score | 0.12612470984458923 |
| keywords[9].display_name | Programming language |
| language | en |
| locations[0].id | doi:10.32628/cseit25112761 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4210200847 |
| locations[0].source.issn | 2456-3307 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2456-3307 |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | International Journal of Scientific Research in Computer Science Engineering and Information Technology |
| locations[0].source.host_organization | |
| locations[0].source.host_organization_name | |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://www.ijsrcseit.com/index.php/home/article/download/CSEIT25112761/CSEIT25112761 |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | International Journal of Scientific Research in Computer Science, Engineering and Information Technology |
| locations[0].landing_page_url | https://doi.org/10.32628/cseit25112761 |
| locations[1].id | pmh:oai:zenodo.org:16908283 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400562 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | Zenodo (CERN European Organization for Nuclear Research) |
| locations[1].source.host_organization | https://openalex.org/I67311998 |
| locations[1].source.host_organization_name | European Organization for Nuclear Research |
| locations[1].source.host_organization_lineage | https://openalex.org/I67311998 |
| locations[1].license | cc-by |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | info:eu-repo/semantics/article |
| locations[1].license_id | https://openalex.org/licenses/cc-by |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | Synergizing Generative AI and Machine Learning for Financial Credit Risk Forecasting and Code Auditing, 11(2), 2882-2893, (2025-08-20) |
| locations[1].landing_page_url | https://doi.org/10.32628/CSEIT25112761 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5027839139 |
| authorships[0].author.orcid | https://orcid.org/0000-0003-1064-3563 |
| authorships[0].author.display_name | Bhushan P. Chaudhari |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | None Bhushan Chaudhari |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5104018806 |
| authorships[1].author.orcid | https://orcid.org/0009-0000-6922-3614 |
| authorships[1].author.display_name | Santhosh Chitraju Gopal Verma |
| authorships[1].author_position | last |
| authorships[1].raw_author_name | None Santhosh Chitraju Gopal Verma |
| authorships[1].is_corresponding | False |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://www.ijsrcseit.com/index.php/home/article/download/CSEIT25112761/CSEIT25112761 |
| open_access.oa_status | diamond |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Synergizing Generative AI and Machine Learning for Financial Credit Risk Forecasting and Code Auditing |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T11653 |
| primary_topic.field.id | https://openalex.org/fields/14 |
| primary_topic.field.display_name | Business, Management and Accounting |
| primary_topic.score | 0.9598000049591064 |
| primary_topic.domain.id | https://openalex.org/domains/2 |
| primary_topic.domain.display_name | Social Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1402 |
| primary_topic.subfield.display_name | Accounting |
| primary_topic.display_name | Financial Distress and Bankruptcy Prediction |
| related_works | https://openalex.org/W2380075625, https://openalex.org/W2404937507, https://openalex.org/W3121186197, https://openalex.org/W2373849942, https://openalex.org/W151161666, https://openalex.org/W2030757640, https://openalex.org/W2118407572, https://openalex.org/W2071653420, https://openalex.org/W4390718435, https://openalex.org/W4390549206 |
| cited_by_count | 2 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 2 |
| locations_count | 2 |
| best_oa_location.id | doi:10.32628/cseit25112761 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4210200847 |
| best_oa_location.source.issn | 2456-3307 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2456-3307 |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | International Journal of Scientific Research in Computer Science Engineering and Information Technology |
| best_oa_location.source.host_organization | |
| best_oa_location.source.host_organization_name | |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://www.ijsrcseit.com/index.php/home/article/download/CSEIT25112761/CSEIT25112761 |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | International Journal of Scientific Research in Computer Science, Engineering and Information Technology |
| best_oa_location.landing_page_url | https://doi.org/10.32628/cseit25112761 |
| primary_location.id | doi:10.32628/cseit25112761 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4210200847 |
| primary_location.source.issn | 2456-3307 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2456-3307 |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | International Journal of Scientific Research in Computer Science Engineering and Information Technology |
| primary_location.source.host_organization | |
| primary_location.source.host_organization_name | |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://www.ijsrcseit.com/index.php/home/article/download/CSEIT25112761/CSEIT25112761 |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | International Journal of Scientific Research in Computer Science, Engineering and Information Technology |
| primary_location.landing_page_url | https://doi.org/10.32628/cseit25112761 |
| publication_date | 2025-04-01 |
| publication_year | 2025 |
| referenced_works | https://openalex.org/W2810984894, https://openalex.org/W6903756385, https://openalex.org/W4407420779, https://openalex.org/W4360585133, https://openalex.org/W4403864823, https://openalex.org/W4394910835, https://openalex.org/W4400771560, https://openalex.org/W4400526864, https://openalex.org/W4386474942, https://openalex.org/W4387487265, https://openalex.org/W4386388022, https://openalex.org/W4213441134, https://openalex.org/W4401284132, https://openalex.org/W3136321522, https://openalex.org/W4394821041 |
| referenced_works_count | 15 |
| abstract_inverted_index.A | 48 |
| abstract_inverted_index.AI | 50, 55 |
| abstract_inverted_index.In | 137 |
| abstract_inverted_index.as | 132 |
| abstract_inverted_index.by | 73 |
| abstract_inverted_index.in | 127, 169 |
| abstract_inverted_index.it | 39 |
| abstract_inverted_index.of | 4, 166 |
| abstract_inverted_index.on | 24, 53, 151 |
| abstract_inverted_index.to | 14, 40, 104, 129, 139, 142 |
| abstract_inverted_index.SVM | 123 |
| abstract_inverted_index.The | 68, 93, 160 |
| abstract_inverted_index.and | 2, 6, 17, 77, 114, 124, 155 |
| abstract_inverted_index.for | 62 |
| abstract_inverted_index.new | 49 |
| abstract_inverted_index.the | 9, 25, 164 |
| abstract_inverted_index.BERT | 58, 100, 117 |
| abstract_inverted_index.Bank | 94 |
| abstract_inverted_index.Card | 96 |
| abstract_inverted_index.Tree | 126 |
| abstract_inverted_index.code | 90 |
| abstract_inverted_index.data | 71 |
| abstract_inverted_index.deep | 167 |
| abstract_inverted_index.need | 38 |
| abstract_inverted_index.risk | 11, 31, 65, 158, 171 |
| abstract_inverted_index.than | 122 |
| abstract_inverted_index.time | 7 |
| abstract_inverted_index.will | 149 |
| abstract_inverted_index.with | 57, 109 |
| abstract_inverted_index.adapt | 141 |
| abstract_inverted_index.based | 52 |
| abstract_inverted_index.costs | 5 |
| abstract_inverted_index.focus | 150 |
| abstract_inverted_index.model | 69 |
| abstract_inverted_index.order | 138 |
| abstract_inverted_index.shows | 99 |
| abstract_inverted_index.while | 19, 43, 85 |
| abstract_inverted_index.99.31% | 106 |
| abstract_inverted_index.99.61% | 110 |
| abstract_inverted_index.99.76% | 112 |
| abstract_inverted_index.99.87% | 115 |
| abstract_inverted_index.Credit | 95 |
| abstract_inverted_index.better | 140 |
| abstract_inverted_index.choice | 83 |
| abstract_inverted_index.credit | 10, 30, 64, 157 |
| abstract_inverted_index.expert | 81 |
| abstract_inverted_index.future | 21, 147 |
| abstract_inverted_index.hybrid | 153 |
| abstract_inverted_index.itself | 61 |
| abstract_inverted_index.market | 145 |
| abstract_inverted_index.models | 16, 103, 154 |
| abstract_inverted_index.recall | 113 |
| abstract_inverted_index.tasks. | 67 |
| abstract_inverted_index.banking | 27 |
| abstract_inverted_index.because | 35 |
| abstract_inverted_index.coupled | 56 |
| abstract_inverted_index.dataset | 97 |
| abstract_inverted_index.deliver | 105 |
| abstract_inverted_index.feature | 82 |
| abstract_inverted_index.impacts | 23 |
| abstract_inverted_index.lending | 46 |
| abstract_inverted_index.prevent | 41 |
| abstract_inverted_index.process | 13 |
| abstract_inverted_index.remains | 33 |
| abstract_inverted_index.require | 8 |
| abstract_inverted_index.results | 121 |
| abstract_inverted_index.sector. | 28 |
| abstract_inverted_index.study's | 161 |
| abstract_inverted_index.support | 163 |
| abstract_inverted_index.through | 80, 88, 134 |
| abstract_inverted_index.Accurate | 29 |
| abstract_inverted_index.Decision | 125 |
| abstract_inverted_index.Logistic | 130 |
| abstract_inverted_index.accuracy | 107 |
| abstract_inverted_index.addition | 128 |
| abstract_inverted_index.advances | 70 |
| abstract_inverted_index.business | 22 |
| abstract_inverted_index.changing | 143 |
| abstract_inverted_index.creating | 152 |
| abstract_inverted_index.defaults | 42 |
| abstract_inverted_index.evaluate | 15 |
| abstract_inverted_index.fairness | 87 |
| abstract_inverted_index.findings | 162 |
| abstract_inverted_index.improves | 78 |
| abstract_inverted_index.learning | 168 |
| abstract_inverted_index.methods. | 47 |
| abstract_inverted_index.presents | 60 |
| abstract_inverted_index.produces | 118 |
| abstract_inverted_index.research | 148 |
| abstract_inverted_index.superior | 45, 119 |
| abstract_inverted_index.systems. | 92 |
| abstract_inverted_index.together | 108 |
| abstract_inverted_index.verified | 133 |
| abstract_inverted_index.F1-score. | 116 |
| abstract_inverted_index.Financial | 0 |
| abstract_inverted_index.analysis. | 136 |
| abstract_inverted_index.assessing | 20 |
| abstract_inverted_index.automatic | 89 |
| abstract_inverted_index.financial | 36, 63, 144, 170 |
| abstract_inverted_index.framework | 51 |
| abstract_inverted_index.precision | 111 |
| abstract_inverted_index.producing | 74 |
| abstract_inverted_index.real-time | 156 |
| abstract_inverted_index.stability | 1 |
| abstract_inverted_index.surpasses | 101 |
| abstract_inverted_index.synthetic | 75 |
| abstract_inverted_index.Generative | 54 |
| abstract_inverted_index.Regression | 131 |
| abstract_inverted_index.assessment | 12 |
| abstract_inverted_index.commercial | 26 |
| abstract_inverted_index.delivering | 86 |
| abstract_inverted_index.developing | 44 |
| abstract_inverted_index.efficiency | 3 |
| abstract_inverted_index.evaluation | 32, 91, 98 |
| abstract_inverted_index.mechanisms | 84 |
| abstract_inverted_index.technology | 59 |
| abstract_inverted_index.application | 165 |
| abstract_inverted_index.comparative | 135 |
| abstract_inverted_index.comparisons | 18 |
| abstract_inverted_index.conditions, | 146 |
| abstract_inverted_index.forecasting | 66 |
| abstract_inverted_index.fundamental | 34 |
| abstract_inverted_index.information | 76 |
| abstract_inverted_index.management. | 172 |
| abstract_inverted_index.monitoring. | 159 |
| abstract_inverted_index.conventional | 102 |
| abstract_inverted_index.institutions | 37 |
| abstract_inverted_index.classification | 120 |
| abstract_inverted_index.generalization | 79 |
| abstract_inverted_index.representation | 72 |
| cited_by_percentile_year.max | 97 |
| cited_by_percentile_year.min | 95 |
| countries_distinct_count | 0 |
| institutions_distinct_count | 2 |
| citation_normalized_percentile.value | 0.97477704 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |